One reason a kind of educational repair or re-education is so necessary is that the simplest truths of world history are never presented clearly and openly.
Here’s an aspect of “global inequality” that is completely overlooked or considered taboo:
One dimension or axis of world history is the world-historical “land question”—which groups “grabbed” gigantic pieces of the land surface of the earth and which didn’t.
A Putin can also invent his own regional “Monroe Doctrine” (i.e., stay out of my sphere of influence as randomly defined by me) and thus we have local (in this case, Russian) reinventions of America’s “Manifest Destiny” and the “Monroe Doctrine.”
This inchoate “relativism” at the heart of human affairs guarantees instability and mayhem and “historical inequality” (i.e., who gets to be “anarcho-lawless” and who doesn’t).
There can’t be a real education without putting on the table, in front of him or her, on their “educational plate” all of these truths, from the personal to the impersonal to the world historical.
The Brain Bank has released findings from its first three years of operation, analyzing the brains of professional and non-professional athletes who donate them after death.
The researchers say 12 of the athletes’ brains showed signs of chronic traumatic encephalopathy (CTE), a condition associated with a range of psychiatric problems, ranging from mood and behavior disorders to cognitive impairment and dementia.
“CTE was identified in the brains of older former professionals with long playing careers, but also in younger, non-professional sportsmen and in recent professionals who had played under modern concussion guidelines,” the authors found.
“Screening for CTE in all deaths by suicide is probably impractical, but our finding suggests it should be undertaken if a history of repetitive head injury is known or suspected,” the authors say.
The authors note that brains donated to the bank are more likely to show signs of trauma because donation is often done when an athlete’s family have concerns about the role head trauma may have played in a person’s death or condition.
Nonetheless, they say: “Our findings should encourage clinicians and policymakers to develop measures that further mitigate the risk of sport-related repetitive head injury.”
One Step Closer to Hydrogen-Fueled Planes
Airbus to Test Zero-Emissions Aircraft, but How Does It Work?
Hydrogen fuel, touted by some as the fuel of the future, is seen as a potential solution for the deeply polluting aviation and shipping industries in a net-zero world: hydrogen burns cleanly, producing just energy and water vapor.
But while engineers have promoted hydrogen as a possible transport fuel since at least the 1920s, real-world technologies are still in their infancy, thanks to the destructive dominance of fossil fuels over the last century.
Airbus’ announcement, then, marks an important early step in a move towards making the sector compatible with net-zero.
“This is the most significant step undertaken at Airbus to usher in a new era of hydrogen-powered flight since the unveiling of our ZEROe concepts back in September 2020,” said Sabine Klauke, Airbus Chief Technical Officer, in a statement.
“By leveraging the expertise of American and Europeanengine manufacturers to make progress on hydrogen combustion technology, this international partnership sends a clear message that our industry is committed to making zero-emission flight a reality.”
“Our ambition is to take this aircraft and add a stub in between the two rear doors at the upper level,” said Glenn Llewellyn, Airbus’ Vice President of Zero Emissions Aircraft, in a promotional video on YouTube. “That stub will have on the end of it a hydrogen powered gas turbine.”
There will be instruments and sensors around the hydrogen storage unit and engine, to monitor how the system functions both in ground tests and in-flight. Up in the cockpit, instruments will need to be modified with a new throttle to change the amount of power the engine operates at, and a display for pilots to monitor the system.
Why Hydrogen Fuel?
Hydrogen, the most abundant element in the Universe, burns cleanly, and can be produced using renewable energy through the electrolysis of water (though it can be produced using fossil fuels, too).
Given that it’s so abundant, can be made from water, and combusts to produce water vapor, it can be a closed-loop energy system; the definition of renewable.
It’s also highly reactive: hydrogen gas, made up of two hydrogen atoms, can combust at extremely low concentrations. It can combust in response to a simple spark, and it’s even been known to combust when exposed to sunlight or minor increases in temperature. That’s why it’s a suitable replacement fuel for kerosene, but it’s also why the system needs to be tested for safety.
“Aviation is one of these things that everyone agrees needs hydrogen for decarbonization, because it’s not going to be possible to electrify long distance air travel in the next few decades,” explains Fiona Beck, a senior lecturer at ANU and convener of the Hydrogen Fuels Project in the University’s Zero-carbon energy for the Asia Pacific grand challenge. “We just don’t have the battery technologies.
“One kilogram of hydrogen has 130 times the energy of one kilogram of batteries, so in something like air travel, where weight is really important, there’s just no way you’re going to get batteries light enough to directly electrify air travel.”
That’s a very high-profile incident in which hydrogen proved deadly, but a proverbial boatload of hydrogen gas encased within a fabric covering is nothing like the fuel cells proponents of hydrogen fuel are creating in the modern era.
Nonetheless, the incident demonstrates why it’s important to ensure the safety and impregnability of fuel storage; a single spark can prove fatal (though that’s the case with existing fuels, too).
“The key will be to have really good storage containers for the hydrogen, and you’re going to have to re-engineer all the fuel delivery lines,” says Beck, “because you can’t assume that the systems that deliver kerosene safely to an engine are going to be suitable for delivering hydrogen.”
Ultimately, Beck says pre-existing, sophisticated hydrogen technologies, even if they aren’t derived from aviation, mean engineers aren’t going into this blind.
“We already use quite a lot of hydrogen in industry, which is very different than flying a plane full of hydrogen, but still, we know how to handle it relatively safely.
“So, it’s just about designers and engineers making sure that they consider all the safety aspects of it. It’s different, but not necessarily more challenging.”
Two Paths to a Hydrogen Fueled Future of Flight?
Beck notes that Airbus aren’t the only commercial entity exploring hydrogen as a fuel type. In fact, Boeing are incorporating hydrogen into their vision of a cleaner future, but in a different way.
“There’s a difference between just getting hydrogen and burning it in a modified jet engine and what Boeing are doing, which is using sustainable air fuels,” she says.
But what are sustainable air fuels (SAFs)? Beck says they’re made by combining hydrogen with carbon dioxide to make a sustainably-produced kerosene.
“The difference is that instead of getting fossil fuels and refining them, you start with hydrogen, which you would hope comes from green sources, and then you take some carbon dioxide captured from another industrial process, and you’re cycling the carbon dioxide one more time before it gets released.”
So, CO2 is still released into the atmosphere, but the individual flight is not adding its own new load of greenhouse gases to the amount. Instead, it essentially piggy-backs off a pre-existing quantity of emissions that were already produced somewhere else.
The type of fuel that wins out remains to be seen.
“It’ll be really interesting to see which approach we go for in the longer term,” Beck muses. “With synthetic air fuels, your plane engine doesn’t need to change at all, nothing about the demand side needs to change–it’s just kerosene.
“But then there’s issues, because you’re still using carbon dioxide.”
Some commentators see Boeing’s bet on SAFs as a more pragmatic approach that may help us usher in a less polluting age, quicker. On the other hand, if successful, the Airbus system can be fully carbon-neutral from fuel production through to combustion.
“Climate Adaptation by Itself Is Not Enough”: The Latest IPCC Report Installment
The Second of Three Reports Shows Our Vulnerabilities and How We Can Protect Them.
In the next part of its Sixth Assessment Report, released today, the IPCC has examined the world population’s vulnerability to climate change, and what must be done to adapt to current and future changes.
It’s the second of three sections of this report (Working group II)–Working Group I’s section, released last August, demonstrates that anthropogenic climate change is continuing, while Working Group III’s component, on mitigation, will be released in April. An overall report is coming in September.
The IPCC reports represent a phenomenal amount of work from hundreds of researchers and government officials. It synthesizes information from over 10,000 studies, with over 62,000 comments from expert peer reviewers.
Literally every sentence of the summary for policymakers has been agreed upon by consensus from a group of experts and government delegations–the line-by-line approval process alone takes a fortnight. The report in its entirety is a product of several years.
Given the time and expertise involved in making the report, its conclusions aren’t revelatory: the world is becoming increasingly vulnerable to the effects of climate change, poorest people are often the most at risk, and adaptation to these effects will force changes in our lifestyle, infrastructure, economy and agriculture.
While adaptation is necessary, it’s also insufficient. “It’s increasingly clear that the pace of adaptation across the globe is not enough to keep up with climate change,” says Professor Mark Howden, Working Group II’s vice-chair and director of the Institute for Climate, Energy & Disaster Solutions at the Australian National University.
Under the IPCC’s projected emissions scenarios, the climate could warm much more or slightly more, based on the volume of greenhouse gas released into the atmosphere.
“Depending on which of those trajectories we go on, our adaptation options differ,” says Howden.
On our current, business-as-usual trajectory, we can’t avoid the crisis, no matter how much we change our human systems to prepare for or recover from the ravages of climate change.
“Climate adaptation, risk management, by itself is not enough,” says Howden.
The report comes at a pertinent time for Australia, as southern Queensland and northern New South Wales experience dramatic flooding from high, La Niña-related rainfall.
“One of the clear projections is an increase in the intensity of heavy rainfall events,” says Professor Brendan Mackey, director of National Climate Change Adaptation Research Facility at Griffith University, and a lead author on the Australasian chapter of the report.
Mackey also notes that he has extended family members in Lismore, NSW, who today needed to be rescued from their rooftops as the town floods.
Howden says that while it’s hard to link individual disasters to climate change as they occur, he agrees that there are more floods projected for northern Australia.
“I think we can say that climate change is already embedded in this event,” adds Howden.
“These events are driven by, particularly, ocean temperatures, and we know very well that those have gone up due to climate change due to human influence.”
He points out that flooding is a common side effect of a La Niña event, of which more are expected as the climate warms.
Flooding is not the only extreme weather event that can be linked to climate change.
“We’ve observed further warming and sea level rise, we’ve observed more flood days and heat waves, we’ve observed less snow,” says Mackey.
“Interestingly, [we’ve observed] more rainfall in the north, less winter rainfall in the southwest and southeast, and more extreme fire weather days in the south and east.”
All of these trends are expected to continue, especially under high-emissions scenarios.
For Australians, the predictions the IPCC has made with very high or high confidence include: both a decline in agricultural production and increase in extreme fire weather across the south of the continent; a nation-wide increase in heat-related mortality; increased stress on cities, infrastructure and supply chains from natural disasters; and inundation of low-lying coastal communities from sea level rise.
The final high-confidence prediction is that Australian institutions and governments aren’t currently able to manage these risks.
“Climate change impacts are becoming more complex and difficult to manage,” says Professor Lauren Rickards, director of the Urban Futures Enabling Capability Platform at RMIT, also a lead author on the Australasian chapter.
“Not only are climatic hazards becoming more severe–including, sometimes, nonlinear effects such as, for example, tipping over flood levees that have historically been sufficient–but also those climatic hazards are intersecting in very, very complex ways. And in turn, the flow-on effects on the ground are interacting, causing what’s called cascading and compounding impacts.”
She adds that many local and state governments and the private sector have both recognized the importance of changing their practices to prepare for or react to climate extremes.
“We have these systems, these infrastructural systems–energy, transport, water, communications, for example–and it’s the need to adapt those at the base of a lot of the adaptation that’s needed,” says Rickards.
Australia is missing a large investment in research on how different places and systems can adapt to the changing climate.
“We’ve seen a really significant reduction in the research into what actions different individuals, communities, sectors, can take,” says Howden.
“And what that means is we don’t have the portfolio of options available for people in a way that is easily communicable, and easily understood, and easily adopted.”
Without this research, as well as work from local and Indigenous experts, some adaptations can even risk worsening the impacts of climate change.
“The evidence that we’ve looked at shows really clearly that adaptation strategies, when they build on Indigenous and local knowledge and integrate science, that’s when they are most successful,” says Dr. Johanna Nalau, leader of the Adaptation Science Research Theme at Cities Research Institute, Griffith University.
While the risks Australia faces are dramatic, things are much worse for other parts of the world. Nalau, who was a lead author on the report’s chapter on small islands, says that “most of the communities and countries are constrained in what they can do in terms of adaptation”.
In April, we will have access to the IPCC’s dossier on mitigating climate change and emissions reduction. But in the meantime, Working Group II’s battalion of researchers advocate for better planning for climate disaster, more research into ways human systems can adapt, sustainable and just development worldwide, and rapid emissions reduction.
“Adaptation can’t be divorced from mitigation, conceptually or in practice,” says Rickards.
“We need adaptation to enable effective mitigation. We need effective mitigation to enable adaptation to give it a chance of succeeding. At present, we’re not on track and we need to pivot quickly.”
Piecing Together Pandemic Origins
New Research Asserts Market, Not Laboratory, Is the “Unambiguous” Birthplace of SARS-CoV-2
by Jamie Priest
Now in our third year of woe, most of us are naturally focused on the end of the pandemic. The global death toll is approaching 6 million, and the world is desperately searching for signs the ordeal’s over.
But amid the future watching, a team of researchers have turned their attention back to the beginning, tackling the question that was once on everyone’s lips: where did SARS-CoV-2 originate?
Outlining their evidence in two preprints, researchers assert an “unambiguous” origin in the Huanan market in Wuhan, spilling over not once, but twice into the human population and kicking off a global health crisis.
The paired papers, which have yet to undergo peer review and publication in a scientific journal, critically undermine the competing, and controversial, alternative origin story that involves a leak–intentional or otherwise–from a nearby Wuhan virology lab where scientists study coronaviruses.
The Huanan market was an immediate suspect when COVID first emerged in late 2019. Workers at the market were amongst the first individuals to present with the pneumonia that was quickly linked to a novel coronavirus, and Chinese officials, fearing a repeat of the 2002 SARS epidemic that killed 774 people, were quick to close the market down.
But by the time Chinese researchers descended on the Huanan market in 2020 to collect genetic samples, they found no wildlife present at all. Although they were able to detect traces of the virus in samples taken from surfaces and sewers in the market, the lack of direct evidence of infection in market animals sparked a debate over whether this truly was the epicenter of the outbreak. Alternative theories centered around the Wuhan Institute of Virology.
In the face of this absence of evidence, researchers working on the new reports turned to alternative information sources.
Using data pulled from the Chinesesocial media app Weibo, they were able to map the location of 737 COVID-positive Wuhan residents who turned to the app to seek health advice during the first three months of the outbreak.
Plotting the geographic concentrations of cases through time, the researchers clearly identified the market as the centre of origin, with the virus spreading radially through surrounding suburbs and across the city as time progressed. Through statistical analysis, the researchers demonstrated that the chances of such a pattern arising through mere chance was exceedingly unlikely.
However, the pattern alone was open to interpretation, with questions remaining about pathways of introduction to the market–was the virus carried in inside a caged animal, on the coat of an unwitting scientist, or via some as-yet unidentified vector?
To dig further into the mystery, the researchers looked at the genetic samples obtained from market surfaces in January 2020 by Chinese scientists, tracing the locations of individual positive samples to their exact location within the market complex.
This second map revealed a strong concentration of positive samples in one corner of the market, a sector that had been previously documented to house a range of wild mammals that are considered potential coronavirus hosts.
Finally, the researchers created an evolutionary family tree of the earliest coronavirus lineages that emerged in the first few panicked weeks of the pandemic.
Even in its very earliest stages SARS-CoV-2 was a variable beast, with evidence of two distinct lineages, dubbed A and B. Looking closely at the mutations that separate the two, the researchers found something surprising–rather than one descending from the other, it appears that they had separate origins and entries into the human population, with lineage B making the leap in late November and lineage A following suit shortly afterwards.
Initial studies of the Huanan market genetic samples found only lineage B, but this latest investigation detected the presence of lineage A in people who lived in close proximity to the market–a finding corroborated by a recent Chinese study that identified lineage A on a single glove collected from the market during the initial shutdown.
Questions remain about the identity of the intermediary animal host species. But by narrowing research focus to the most likely centre of origin, this research will significantly aid efforts to understand the process that saw COVID-19 enter the world, and hopefully help avert future pandemics.
Fake Viral Footage Is Spreading alongside the Real Horror in Ukraine—Here Are 5 Ways to Spot It
Manipulated or Falsified Videos and Images Can Spread Quickly—but There Are Strategies You Can Take to Evaluate Them.
By TJ Thompson, Daniel Angus and Paul Dootson
Amid the alarming images of Russia’s invasion of Ukraine over the past few days, millions of people have also seen misleading, manipulated or false information about the conflict on social media platforms such as Facebook, Twitter, TikTok and Telegram.
One example is this video of military jets posted to TikTok, which is historical footage but captioned as live video of the situation in Ukraine.
Visuals, because of their persuasive potential and attention-grabbing nature, are an especially potent choice for those seeking to mislead. Where creating, editing or sharing inauthentic visual content isn’t satire or art, it is usually politically or economically motivated.
Disinformation campaigns aim to distract, confuse, manipulate and sow division, discord, and uncertainty in the community. This is a common strategy for highly polarized nations where socioeconomic inequalities, disenfranchisement and propaganda are prevalent.
How is this fake content created and spread, what’s being done to debunk it, and how can you ensure you don’t fall for it yourself?
What Are the Most Common Fakery Techniques?
Using an existing photo or video and claiming it came from a different time or place is one of the most common forms of misinformation in this context. This requires no special software or technical skills—just a willingness to upload an old video of a missile attack or other arresting image, and describe it as new footage.
Another low-tech option is to stage or pose actions or events and present them as reality. This was the case with destroyed vehicles that Russia claimed were bombed by Ukraine.
Using a particular lens or vantage point can also change how the scene looks and can be used to deceive. A tight shot of people, for example, can make it hard to gauge how many were in a crowd, compared with an aerial shot.
Taking things further still, Photoshop or equivalent software can be used to add or remove people or objects from a scene, or to crop elements out from a photograph. An example of object addition is the below photograph, which purports to show construction machinery outside a kindergarten in eastern Ukraine. The satirical text accompanying the image jokes about the “calibre of the construction machinery”—the author suggesting that reports of damage to buildings from military ordinance are exaggerated or untrue.
Close inspection reveals this image was digitally altered to include the machinery. This tweet could be seen as an attempt to downplay the extent of damage resulting from a Russian-backed missile attack, and in a wider context to create confusion and doubt as to veracity of other images emerging from the conflict zone.
Journalists and fact-checkers are also working to verify content and raise awareness of known fakes. Large, well-resourced news outlets such as the BBC are also calling out misinformation.
Social media platforms have added new labels to identify state-run media organisations or provide more background information about sources or people in your networks who have also shared a particular story.
They have also tweaked their algorithms to change what content is amplified and have hired staff to spot and flag misleading content. Platforms are also doing some work behind the scenes to detect and publicly share information on state-linked information operations.
What Can I Do about It?
You can attempt to fact-check images for yourself rather than taking them at face value. An article we wrote late last year for the Australian Associated Press explains the fact-checking process at each stage: image creation, editing and distribution.
Here are five simple steps you can take:
Examine the metadata
This Telegram post claims Polish-speaking saboteurs attacked a sewage facility in an attempt to place a tank of chlorine for a “false flag” attack.
But the video’s metadata—the details about how and when the video was created—show it was filmed days before the alleged date of the incident.
To check metadata for yourself, you can download the file and use software such as Adobe Photoshop or Bridge to examine it. Online metadata viewers also exist that allow you to check by using the image’s web link.
One hurdle to this approach is that social media platforms such as Facebook and Twitter often strip the metadata from photos and videos when they are uploaded to their sites. In these cases, you can try requesting the original file or consulting fact-checking websites to see whether they have already verified or debunked the footage in question.
If old content has been recycled and repurposed, you may be able to find the same footage used elsewhere. You can use Google Images or TinEye to “reverse image search” a picture and see where else it appears online.
But be aware that simple edits such as reversing the left-right orientation of an image can fool search engines and make them think the flipped image is new.
Look for inconsistencies
Does the purported time of day match the direction of light you would expect at that time, for example? Do watches or clocks visible in the image correspond to the alleged timeline claimed?
You can also compare other data points, such as politicians’ schedules or verified sightings, Google Earth vision or Google Maps imagery, to try and triangulate claims and see whether the details are consistent.
Ask yourself some simple questions
Do you know where, when and why the photo or video was made? Do you know who made it, and whether what you’re looking at is the original version?
Using online tools such as InVID or Forensically can potentially help answer some of these questions. Or you might like to refer to this list of 20 questions you can use to “interrogate” social media footage with the right level of healthy skepticism.
Ultimately, if you’re in doubt, don’t share or repeat claims that haven’t been published by a reputable source such as an international news organization. And consider using some of these principles when deciding which sources to trust.
By doing this, you can help limit the influence of misinformation, and help clarify the true situation in Ukraine.
The 1961 fast-paced comedy, One, Two, Three starring James Cagney is extremely informative in a certain way if you get beyond the farcical and “manic-jocular” tone and atmosphere.
The story takes place in West Berlin. Communism and Nazism are still “in the air,” although Germany has of course been defeated in 1945.
C.R. “Mac” MacNamara (James Cagney) is a high-ranking executive in the Coca-Cola Company, assigned to West Berlin after a business fiasco a few years earlier in the Middle East (about which he is still bitter). While based in West Germany for now, Mac is angling to become head of Western European Coca-Cola Operations, based in London. After working on an arrangement to introduce Coke into the Soviet Union, Mac receives a call from his boss, W.P. Hazeltine, at the Coca-Cola headquarters in Atlanta. Scarlett Hazeltine, the boss’s hot-blooded but slightly dim 17-year-old socialite daughter, is coming to West Berlin. Mac is assigned the unenviable task of taking care of this young whirlwind.
The undiscussed and “latent content” of this zany comedy is very serious.
There are three fundamental choices for a country:
The implicit message of the movie, which constitutes a kind of ultimate political science lesson, is that cola wars (i.e., corporatecompetition for sales and profits and markets worldwide) is the best choice, no matter that it seems manic and empty, since the alternatives on the list of three options are impractical nightmares which lead to calamities and historical catastrophes.
Fed President Patrick Harker Says It Will “Soon” Be Time to Taper Asset Purchases
Philadelphia Fed President Patrick Harker told a virtual audience at the Prosperity Caucus in Washington, D.C., that the asset purchases once necessary during the acute phase of the COVID-19 pandemic are no longer effective as a tool for supporting the economy. He also said the U.S. economy created millions of jobs in recent months, but “we just can’t fill them.”
Economic Outlook: Growth Despite Constraints
Good evening! Thanks so much for having me. I understand that when this group meets in person there is usually pizza involved — so I intend to collect on that debt next time we do this in the flesh.
I plan to offer a few remarks about the state of the national economy and the path of Federal Reserve policy. Then we can move to our Q&A, which I’m really looking forward to.
I know this group encompasses a very diverse crowd — we have everyone from House staffers to Senate staffers here. So, just in case anyone doesn’t know, I want to begin by giving you a very brief explanation of what, exactly, a regional Federal Reserve Bank is. Our nation’s central bank, after all, is quite unusual — unique, even — in its design.
The Board seats seven governors, including the Chair. Each regional Bank has its own president and board of directors, which is made up of business, banking, and community leaders from the area. Fundamentally, this provides the Fed with a perspective — within each District — of the sectors and issues that make the region tick. Mine is the Third District, which encompasses eastern Pennsylvania, South Jersey, and the state of Delaware. We’re the smallest District geographically, but I like to think we punch above our weight.
While the rest of us don’t always vote, we do always represent our Districts and play a part in the discussion. If you were at a normal FOMC meeting, you probably wouldn’t be able to tell a voting member until the end of the meeting when it’s time to raise hands. Everybody contributes.
The United States has a unique set of needs. It’s easy to forget that we’re an outlier because we’re such a massive country: Only Russia and Canada are bigger geographically, only China and India have larger populations, and no one country has a bigger economy, at least for now. And that economy is vast, spreading across sectors and natural resources in a way that is not typical of other nations.
And what that information is telling us is that, for the past 18 months, the economy has moved in tandem with the waxing and waning of the COVID-19 pandemic. During periods when case rates and hospitalizations have declined, the economy has surged as Americanconsumers have voted with their wallets. When COVID-19 risks abate, more Americans dine out at restaurants, check in to hotels, and fill up airplanes. Those are important categories of spending in a country where consumption makes up about 70 percent of total economic activity. In the second quarter of this year, for instance, GDP grew at a very healthy annualized rate of around 6.7 percent as case rates plummeted.
And, of course, the opposite occurs during periods when the virus spikes. When the Delta variant of COVID-19 erupted, fomenting the country’s fourth major wave of the pandemic, things started moving sideways. Consumer confidence tanked, and large industries like hospitality and leisure stagnated at best. So for this quarter, we can expect growth to come in at an annualized rate of around 3 percent, a sharp slowdown from earlier this year.
But there are reasons to be sanguine that the country’s recovery from this wave of COVID-19 may prove more durable than in the past and that we can avoid a fifth wave. And that is because more than half of the country is fully vaccinated. Getting more shots into arms will save lives and aid the recovery by reducing the size and severity of future spikes. The Delta variant has also concentrated minds: It seems to have not only persuaded more Americans to get shots on their own, but it also pushed more corporations and institutions to mandate their employees to get vaccinated. That is cause for optimism.
Filling me with less optimism is the persistent constraints the economy is operating under.
The COVID-19 pandemic has revealed how fragile many of our supply chains are. We’re now experiencing shortages of crucial parts like computer chips, which has hobbled not only the production of cars and trucks, but also comparatively smaller durable goods like home appliances. My recent experience attempting to purchase a printer — there were essentially none at my local electronics store — testifies to that. And good luck trying to find a new washing machine or dishwasher.
These supply chain constraints are rippling through the entire economy. Manufacturers in our region have reported having to curtail production because of difficulties securing raw materials. We’re also seeing low inventory of everything from shoes to backpacks to even chicken wings, which is a particularly troubling development as the NFL season is picking up. Unfortunately, there are indications that these constraints could persist for a couple of more years.
There’s another input lacking in supply as well, further constraining the economy: labor. It isn’t true, as was widely reported, that the economy only created 194,000 jobs in September. In reality, the U.S. economy has created many millions of jobs in recent months — we just can’t fill them. Indeed, job openings are at record highs, hitting nearly 10.5 million at the end of August. Simultaneously, more people are quitting their jobs, and the rate at which open positions are being filled is continuing to slow.
It seems that a combination of factors — trouble accessing childcare or eldercare, lingering fears about the virus, the rise in equities and home values spurring people to retire, and perhaps a general revaluation of life choices — is persuading a lot of Americans to stay on the sidelines even as the economy has reopened. And notably, the elimination of extra federal unemployment benefits has not — at least not yet — appeared to nudge people back into the workforce. I do expect that will change eventually and especially as other forbearance programs run out.
So, where does all of this leave us? For 2021, I would expect GDP growth to come in around 5.5 percent, which is a downward revision from before Delta took hold. Growth will then moderate to about 3.5 percent in 2022, and 2.5 percent in 2023. Inflation, meanwhile, should come in around 4 percent for 2021, though I do see upside risk here. After that, our modal forecast — that is, the average of all of our forecasts — calls for inflation of a bit over 2 percent for 2022 and right at 2 percent in 2023.
Fed Policy
In terms of monetary policy, I am in the camp that believes it will soon be time to begin slowly and methodically — frankly, boringly — taper our $120 billion in monthly purchases of Treasury bills and mortgage-backed securities. This comes down to the efficacy of these purchases as a tool.
They were necessary to keep markets functioning during the acute phase of the crisis. But to the extent that we are still dealing with a labor force issue, the problem lies on the supply side, not with demand. You can’t go into a restaurant or drive down a commercial strip without noticing a sea of “Help Wanted” signs. Asset purchases aren’t doing much — or anything — to ameliorate that.
After we taper our asset purchases, we can begin to think about raising the federal funds rate. But I wouldn’t expect any hikes to interest rates until late next year or early 2023, unless the inflation picture changes dramatically.
Conclusion
Given the strong headwinds facing the economy, it is a testament to its underlying strength that growth continues at a relatively robust pace. That is a tribute, as always, to the ingenuity and tenacity of our people, especially in the face of huge challenges.
Thank you very much again for having me. And now let’s move on to questions.
There’s a deep reason that guarantees the insipid feel of most historical courses and textbooks used in schools at all levels. The problem is that the underlying savagery of history is never really faced but is always fudged over. The books and courses in schools of all levels tend to be “tangential” to any reality.
One of the underlying “motors” of all history is the land question in its two aspects:
Parallel processes took place everywhere including China, Russia, etc.
The truth of these historo-crimes at the root of all history is then avoided “forever.”
This makes all discussions of who got what and why, where and when escapist at best.
2. The Private Land Question
Countries like those in Central America were characterized by the fact that when the European empires such as Spain were removed from “ownership,” handfuls of elite families took al the best farmland and parlayed that into political power. Those the top coffee growers have dominated Central America for centuries and the landless and indigenous are in a permanent emergency. Questioning this distribution leads to mass murders such as under Guatemala’s Ríos Montt (died 2018) in the 1980s.
These two “land questions”—the national and the private—are at the core of all world history and this means that failure to put these truths on the table of educational analysis, leads to “let’s pretend” “denial detours.”
There is a fundamental historical dishonesty that governs the educational process and since “the truth will make you free,” it follows that “the untruth will make you unfree” (i.e., “captive mind” syndrome everywhere).
The great historian Élie Halévy’s (died in 1937) History of the English People in the Nineteenth Century, a multi-volume classic, gives us a sense of nineteenth centuryfamine dynamics for the 1840s, which combines failed harvests and failed incomes and failed speculations together:
“It was a ‘dearth’ (i.e., scarcity)—a crisis belonging to the old order—the last ‘dearth,’ in fact, Europe had known up to the present day (i.e., before 1937). The unsatisfactory harvest of 1845 was followed by the disastrous autumn of 1846. The potato disease was worse than it had been the year before. The cereal harvest, moderately good in 1845, was a failure not only in the United Kingdom, but in France and throughout Western Europe. In 1845, Great Britain could still purchase corn even in Ireland, while the Irish poor were starving to death. Nothing of the kind was possible at the end of 1846.
“In consequence the price of wheat rose from 50 shillings and 2d. on August 22 to 65 shillings and 7d. on November 18. The price of wheat rose once more. It exceeded 78 shillings in March.
“Later there was a fall of 50% in four months. The cornfactors (i.e., corn dealers) who for months had been gambling on a rise had no time to retrace their steps and were ruined at a single blow.” (“Commerical Failures in 1847,” Eclectic Review, December 1847)
(Élie Halévy, “Victorian Years (1841-1895),” Halévy’s History of the English People in the Nineteenth Century, Volume 4, pages 191-193, Ernest Benn Ltd., 1970)
We sense from Halévy’s description of the “food insecurity” of the nineteenth century in Europe, why the Revolutions of 1848 were to a large extent severe food riots and how food poverty and speculation interacted with risk and uncertainty prevailing.
Halévy states: “It was a ‘dearth’ (i.e., scarcity)—a crisis belonging to the old order—the last ‘dearth,’ in fact, Europe had known up to the present day…”.
It would be instructive to ponder whether this really was “a crisis belonging to the old order” given the catastrophes and food crises that could come with climate change from 2019 on out. Will we have “global ‘dearths’”?
Rapid and widespread changes across all parts of the energy system are needed to put the world on a path to a secure and sustainable energy future
Deep disparities define today’s energy world. The dissonance between well-supplied oilmarkets and growing geopolitical tensions and uncertainties. The gap between the ever-higher amounts of greenhouse gasemissions being produced and the insufficiency of stated policies to curb those emissions in line with international climate targets. The gap between the promise of energy for all and the lack of electricity access for 850 million people around the world.
The World Energy Outlook 2019, the International Energy Agency’s flagship publication, explores these widening fractures in detail. It explains the impact of today’s decisions on tomorrow’s energy systems, and describes a pathway that enables the world to meet climate, energy access and air quality goals while maintaining a strong focus on the reliability and affordability of energy for a growing global population.
As ever, decisions made by governments remain critical for the future of the energy system. This is evident in the divergences between WEO scenarios that map out different routes the world could follow over the coming decades, depending on the policies, investments, technologies and other choices that decision makers pursue today. Together, these scenarios seek to address a fundamental issue – how to get from where we are now to where we want to go.
The path the world is on right now is shown by the Current Policies Scenario, which provides a baseline picture of how global energy systems would evolve if governments make no changes to their existing policies. In this scenario, energy demand rises by 1.3% a year to 2040, resulting in strains across all aspects of energymarkets and a continued strong upward march in energy-related emissions.
The Stated Policies Scenario, formerly known as the New Policies Scenario, incorporates today’s policy intentions and targets in addition to existing measures. The aim is to hold up a mirror to today’s plans and illustrate their consequences. The future outlined in this scenario is still well off track from the aim of a secure and sustainable energy future. It describes a world in 2040 where hundreds of millions of people still go without access to electricity, where pollution-related premature deaths remain around today’s elevated levels, and where CO2emissions would lock in severe impacts from climate change.
The Sustainable Development Scenario indicates what needs to be done differently to fully achieve climate and other energy goals that policy makers around the world have set themselves. Achieving this scenario – a path fully aligned with the Paris Agreement aim of holding the rise in global temperatures to well below 2°C and pursuing efforts to limit it to 1.5°C – requires rapid and widespread changes across all parts of the energy system. Sharp emission cuts are achieved thanks to multiple fuels and technologies providing efficient and cost-effective energy services for all.
“What comes through with crystal clarity in this year’s World Energy Outlook is there is no single or simple solution to transforming global energy systems,” said Dr. Fatih Birol, the IEA’s Executive Director. “Many technologies and fuels have a part to play across all sectors of the economy. For this to happen, we need strong leadership from policy makers, as governments hold the clearest responsibility to act and have the greatest scope to shape the future.”
In the Stated Policies Scenario, energy demand increases by 1% per year to 2040. Low-carbon sources, led by solarPV, supply more than half of this growth, and natural gas accounts for another third. Oil demand flattens out in the 2030s, and coal use edges lower. Some parts of the energy sector, led by electricity, undergo rapid transformations. Some countries, notably those with “net zero” aspirations, go far in reshaping all aspects of their supply and consumption.
However, the momentum behind clean energy is insufficient to offset the effects of an expanding global economy and growing population. The rise in emissions slows but does not peak before 2040.
Shale output from the United States is set to stay higher for longer than previously projected, reshaping global markets, trade flows and security. In the Stated Policies Scenario, annual U.S. production growth slows from the breakneck pace seen in recent years, but the United States still accounts for 85% of the increase in global oil production to 2030, and for 30% of the increase in gas. By 2025, total U.S.shale output (oil and gas) overtakes total oil and gas production from Russia.
“The shale revolution highlights that rapid change in the energy system is possible when an initial push to develop new technologies is complemented by strong market incentives and large-scale investment,” said Dr. Birol. “The effects have been striking, with U.S. shale now acting as a strong counterweight to efforts to manage oilmarkets.”
The higher U.S. output pushes down the share of OPEC members and Russia in total oil production, which drops to 47% in 2030, from 55% in the mid-2000s. But whichever pathway the energy system follows, the world is set to rely heavily on oil supply from the Middle East for years to come.
Alongside the immense task of putting emissions on a sustainable trajectory, energy security remains paramount for governments around the globe. Traditional risks have not gone away, and new hazards such as cybersecurity and extreme weather require constant vigilance. Meanwhile, the continued transformation of the electricity sector requires policy makers to move fast to keep pace with technological change and the rising need for the flexible operation of power systems.
“The world urgently needs to put a laser-like focus on bringing down global emissions. This calls for a grand coalition encompassing governments, investors, companies and everyone else who is committed to tackling climate change,” said Dr. Birol. “Our Sustainable Development Scenario is tailor-made to help guide the members of such a coalition in their efforts to address the massive climate challenge that faces us all.”
A sharp pick-up in energy efficiency improvements is the element that does the most to bring the world towards the Sustainable Development Scenario. Right now, efficiency improvements are slowing: the 1.2% rate in 2018 is around half the average seen since 2010 and remains far below the 3% rate that would be needed.
Electricity is one of the few energy sources that sees rising consumption over the next two decades in the Sustainable Development Scenario. Electricity’s share of final consumption overtakes that of oil, today’s leader, by 2040. Wind and solarPV provide almost all the increase in electricity generation.
Putting electricity systems on a sustainable path will require more than just adding more renewables. The world also needs to focus on the emissions that are “locked in” to existing systems. Over the past 20 years, Asia has accounted for 90% of all coal-fired capacity built worldwide, and these plants potentially have long operational lifetimes ahead of them. This year’s WEO considers three options to bring down emissions from the existing global coal fleet: to retrofit plants with carbon capture, utilisation and storage or biomass co-firing equipment; to repurpose them to focus on providing system adequacy and flexibility; or to retire them earlier.
About the IEA: The International Energy Agency, the global energy authority, was founded in 1974 to help its member countries co-ordinate a collective response to major oil supply disruptions. Its mission has evolved and rests today on three main pillars: working to ensure global energy security; expanding energy cooperation and dialogue around the world; and promoting an environmentally sustainable energy future.
International Energy Agency Press Office
31-35 Rue de la Fédération, Paris, 75015
Brentcrude oil spot prices averaged $60 per barrel (b) in October, down $3/b from September and down $21/b from October 2018. EIA forecasts Brent spot prices will average $60/b in 2020, down from a 2019 average of $64/b. EIA forecasts that West Texas Intermediate (WTI) prices will average $5.50/b less than Brent prices in 2020. EIA expects crude oil prices will be lower on average in 2020 than in 2019 because of forecast rising global oil inventories, particularly in the first half of next year.
Based on preliminary data and model estimates, EIA estimates that the United States exported 140,000 b/d more total crude oil and petroleum products in September than it imported; total exports exceeded imports by 550,000 b/d in October. If confirmed in survey-collected monthly data, it would be the first time the United States exported more petroleum than it imported since EIA records began in 1949. EIA expects total crude oil and petroleum net exports to average 750,000 b/d in 2020 compared with average net imports of 520,000 b/d in 2019.
Distillate fuel inventories (a category that includes home heating oil) in the U.S. East Coast—Petroleum Administration for Defense District (PADD 1)—totaled 36.6 million barrels at the end of October, which was 30% lower than the five-year (2014–18) average for the end of October. The declining inventories largely reflect low U.S. refinery runs during October and low distillate fuel imports to the East Coast. EIA does not forecast regional distillate prices, but low inventories could put upward pressure on East Coast distillate fuel prices, including home heating oil, in the coming weeks.
U.S. regular gasoline retail prices averaged $2.63 per gallon (gal) in October, up 3 cents/gal from September and 11 cents/gal higher than forecast in last month’s STEO. Average U.S. regular gasolineretail prices were higher than expected, in large part, because of ongoing issues from refinery outages in California. EIA forecasts that regular gasoline prices on the West Coast (PADD 5), a region that includes California, will fall as the issues begin to resolve. EIA expects that prices in the region will average $3.44/gal in November and $3.12/gal in December. For the U.S. national average, EIA expects regular gasoline retail prices to average $2.65/gal in November and fall to $2.50/gal in December. EIA forecasts that the annual average price in 2020 will be $2.62/gal.
Despite low distillate fuel inventories, EIA expects that average household expenditures for home heating oil will decrease this winter. This forecast largely reflects warmer temperatures than last winter for the entire October–March period, and retail heating oil prices are expected to be unchanged compared with last winter. For households that heat with propane, EIA forecasts that expenditures will fall by 15% from last winter because of milder temperatures and lower propane prices.
Natural gas storage injections in the United States outpaced the previous five-year (2014–18) average during the 2019 injection season as a result of rising natural gas production. At the beginning of April, when the injection season started, working inventories were 28% lower than the five-year average for the same period. By October 31, U.S. total working gas inventories reached 3,762 billion cubic feet (Bcf), which was 1% higher than the five-year average and 16% higher than a year ago.
EIA expects natural gas storage withdrawals to total 1.9 trillion cubic feet (Tcf) between the end of October and the end of March, which is less than the previous five-year average winter withdrawal. A withdrawal of this amount would leave end-of-March inventories at almost 1.9 Tcf, 9% higher than the five-year average.
The Henry Hubnatural gas spot price averaged $2.33 per million British thermal units (MMBtu) in October, down 23 cents/MMBtu from September. The decline largely reflected strong inventory injections. However, forecast cold temperatures across much of the country caused prices to rise in early November, and EIA forecasts Henry Hub prices to average $2.73/MMBtu for the final two months of 2019. EIA forecasts Henry Hub spot prices to average $2.48/MMBtu in 2020, down 13 cents/MMBtu from the 2019 average. Lower forecast prices in 2020 reflect a decline in U.S. natural gas demand and slowing U.S. natural gas export growth, allowing inventories to remain higher than the five-year average during the year even as natural gas production growth is forecast to slow.
EIA forecasts that annual U.S. dry natural gas production will average 92.1 billion cubic feet per day (Bcf/d) in 2019, up 10% from 2018. EIA expects that natural gas production will grow much less in 2020 because of the lag between changes in price and changes in future drilling activity, with low prices in the third quarter of 2019 reducing natural gas-directed drilling in the first half of 2020. EIA forecasts natural gas production in 2020 will average 94.9 Bcf/d.
EIA expects U.S. liquefied natural gas (LNG)exports to average 4.7 Bcf/d in 2019 and 6.4 Bcf/d in 2020 as three new liquefaction projects come online. In 2019, three new liquefaction facilities—Cameron LNG, Freeport LNG, and Elba Island LNG—commissioned their first trains. Natural gas deliveries to LNG projects set a new record in July, averaging 6.0 Bcf/d, and increased further to 6.6 Bcf/d in October, when new trains at Cameron and Freeport began ramping up. Cameron LNG exported its first cargo in May, Corpus Christi LNG’s newly commissioned Train 2 in July, and Freeport in September. Elba Island plans to ship its first export cargo by the end of this year. In 2020, Cameron, Freeport, and Elba Island expect to place their remaining trains in service, bringing the total U.S. LNGexport capacity to 8.9 Bcf/d by the end of the year.
EIA expects the share of U.S. total utility-scale electricity generation from natural gas-fired power plants will rise from 34% in 2018 to 37% in 2019 and to 38% in 2020. EIA forecasts the share of U.S. electric generation from coal to average 25% in 2019 and 22% in 2020, down from 28% in 2018. EIA’s forecast nuclear share of U.S. generation remains at about 20% in 2019 and in 2020. Hydropower averages a 7% share of total U.S. generation in the forecast for 2019 and 2020, down from almost 8% in 2018. Wind, solar, and other non-hydropowerrenewables provided 9% of U.S. total utility-scale generation in 2018. EIA expects they will provide 10% in 2019 and 12% in 2020.
EIA expects total U.S. coal production in 2019 to total 698 million short tons (MMst), an 8% decrease from the 2018 level of 756 MMst. The decline reflects lower demand for coal in the U.S. electric power sector and reduced competitiveness of U.S. exports in the global market. EIA expects U.S. steam coal exports to face increasing competition from Eastern European sources, and that Russia will fill a growing share of steam coal trade, causing U.S. coal exports to fall in 2020. EIA forecasts that coal production in 2020 will total 607 MMst.
EIA expects U.S. electric power sector generation from renewables other than hydropower—principally wind and solar—to grow from 408 billion kilowatt-hours (kWh) in 2019 to 466 billion kWh in 2020. In EIA’s forecast, Texas accounts for 19% of the U.S. non-hydropower renewables generation in 2019 and 22% in 2020. California’s forecast share of non-hydropower renewables generation falls from 15% in 2019 to 14% in 2020. EIA expects that the Midwest and Central power regions will see shares in the 16% to 18% range for 2019 and 2020.
EIA forecasts that, after rising by 2.7% in 2018, U.S. energy-related carbon dioxide (CO2)emissions will decline by 1.7% in 2019 and by 2.0% in 2020, partially as a result of lower forecast energy consumption. In 2019, EIA forecasts less demand for space cooling because of cooler summer months; an expected 5% decline in cooling degree days from 2018, when it was significantly higher than the previous 10-year (2008–17) average. In addition, EIA also expects U.S. CO2emissions in 2019 to decline because the forecast share of electricity generated from natural gas and renewables will increase, and the share generated from coal, which is a more carbon-intensive energy source, will decrease.