Monomania and the West

There have been all kinds of “voices” in the history of Western civilization. Perhaps the loudest voice is that of monomaniacs, who always claim that behind the appearance of the many is the one. If we illustrate the West, and at its roots, the intersection of Athens and Jerusalem, we see the origins of this monomania. Plato’s realm of ideas was supposed to explain everything encountered in our daily lives. His main student and rival, Aristotle, has his own competing explanation, based in biology instead of mathematics.

These monomanias in their modern counterpart in ideologies. In communism, the key to have everything is class and the resulting class struggles. Nazism revolves around race and racial conflict.

In our own era, the era of scientism, we have the idea of god replaced with Stephen Hawking’s “mind of god,” Leon Lederman’s The God Particle and KAKU Michio’s The God Equation. In the 2009 film, Angels & Demons, there’s a senior Vatican official, played by Ewan McGregor, who is absolutely outraged by the blasphemous phrase, “the god particle.”

Currently, the monomania impetus continues full-force. For example, Professor Seth Lloyd of MIT tells us that reality is the cosmos and not chaos, because all of reality together is a computer. His MIT colleague, Max Tegmark, argues in his books that the world is not explained by mathematics, but rather is mathematics. Perhaps the climax of this kind of thinking is given to us by the essay “Everything Is Computation” by Joscha Bach:

These days we see a tremendous number of significant scientific news stories, and it’s hard to say which has the highest significance. Climate models indicate that we are past crucial tipping points and irrevocably headed for a new, difficult age for our civilization. Mark van Raamsdonk expands on the work of Brian Swingle and Juan Maldacena and demonstrates how we can abolish the idea of spacetime in favor of a discrete tensor network, thus opening the way for a unified theory of physics. Bruce Conklin, George Church, and others have given us CRISPR/Cas9, a technology that holds promise for simple and ubiquitous gene editing. “Deep learning” starts to tell us how hierarchies of interconnected feature detectors can autonomously form a model of the world, learn to solve problems, and recognize speech, images, and video.

It is perhaps equally important to notice where we lack progress: Sociology fails to teach us how societies work; philosophy seems to have become infertile; the economic sciences seem ill-equipped to inform our economic and fiscal policies; psychology does not encompass the logic of our psyche; and neuroscience tells us where things happen in the brain but largely not what they are.

In my view, the 20th century’s most important addition to understanding the world is not positivist science, computer technology, spaceflight, or the foundational theories of physics.

It is the notion of computation. Computation, at its core, and as informally described as possible, is simple: Every observation yields a set of discernible differences.

These we call information. If the observation corresponds to a system that can change its state, we can describe those state changes. If we identify regularity in those state changes, we are looking at a computational system. If the regularity is completely described, we call this system an algorithm. Once a system can perform conditional state transitions and revisit earlier states, it becomes almost impossible to stop it from performing arbitrary computation. In the infinite case that is, if we allow it to make an unbounded number of state transitions and use unbounded storage for the states—it becomes a Turing machine, or a Lambda calculus, or a Post machine, or one of the many other mutually equivalent formalisms that capture universal computation.

Computational terms rephrase the idea of “causality,” something that philosophers have struggled with for centuries. Causality is the transition from one state in a computational system to the next. They also replace the concept of “mechanism” in mechanistic, or naturalistic, philosophy. Computationalism is the new mechanism, and unlike its predecessor, it is not fraught with misleading intuitions of moving parts.

Computation is different from mathematics. Mathematics turns out to be the domain of formal languages and is mostly undecidable, which is just another word for saying “uncomputable” (since decision making and proving are alternative words for computation, too). All our explorations into mathematics are computational ones, though. To compute means to actually do all the work, to move from one state to the next.

Computation changes our idea of knowledge: Instead of justified true belief, knowledge describes a local minimum in capturing regularities between observables. Knowledge is almost never static but progresses on a gradient through a state space of possible worldviews. We will no longer aspire to teach our children the truth, because, like us, they will never stop changing their minds. We will teach them how to productively change their minds, how to explore the never-ending land of insight.

A growing number of physicists understands that the universe is not mathematical but computational, and physics is in the business of finding an algorithm that can reproduce our observations. The switch from uncomputable mathematical notions (such as continuous space) makes progress possible. Climate science, molecular genetics, and AI are computational sciences. Sociology, psychology, and neuroscience are not: They still seem confused by the apparent dichotomy between mechanism (rigid moving parts) and the objects of their study. They are looking for social, behavioral, chemical, neural regularities, where they should be looking for computational ones.

Everything is computation.

Know This: Today’s Most Interesting and Important Scientific Ideas, Discoveries, and Developments, John Brockman (editor), Harper Perennial, 2017, pages 228-230.

Friedrich Nietzsche rebelled against this type of thinking the most profoundly. If scientism represents the modern, then Nietzsche was the prophet of postmodernism. Nietzsche’s famous phrase, “God is dead.” is not about a creator or divinity, but rather finality itself. There is no final explanation.

World-Watching: Science First Release, 10 July 2025

[from Science]

Accepted papers posted online prior to journal publication.

NASA Earth Science Division provides key data

by Dylan B. Millet, Belay B. Demoz, et al.

In May, the US administration proposed budget cuts to NASA, including a more than 50% decrease in funding for the agency’s Earth Science Division (ESD), the mission of which is to gather knowledge about Earth through space-based observation and other tools. The budget cuts proposed for ESD would cancel crucial satellites that observe Earth and its atmosphere, gut US science and engineering expertise, and potentially lead to the closure of NASA research centers. As former members of the recently dissolved NASA Earth Science Advisory Committee, an all-volunteer, independent body chartered to advise ESD, we warn that these actions would come at a profound cost to US society and scientific leadership.

[read more]

Spin-filter tunneling detection of antiferromagnetic resonance with electrically tunable damping

by Thow Min Jerald Cham, Daniel G. Chica, et al.

Antiferromagnetic spintronics offers the potential for higher-frequency operations and improved insensitivity to magnetic fields compared to ferromagnetic spintronics. However, previous electrical techniques to detect antiferromagnetic dynamics have utilized large, millimeter-scale bulk crystals. Here we demonstrate direct electrical detection of antiferromagnetic resonance in structures on the few-micrometer scale using spin-filter tunneling in PtTe2/bilayer CrSBr/graphite junctions in which the tunnel barrier is the van der Waals antiferromagnet CrSBr. This sample geometry allows not only efficient detection, but also electrical control of the antiferromagnetic resonance through spin-orbit torque from the PtTe2 electrode. The ability to efficiently detect and control antiferromagnetic resonance enables detailed studies of the physics governing these high-frequency dynamics.

[read more]

Scalable emulation of protein equilibrium ensembles with generative deep learning

by Sarah Lewis, Tim Hempel, et al.

Following the sequence and structure revolutions, predicting functionally relevant protein structure changes at scale remains an outstanding challenge. We introduce BioEmu, a deep learning system that emulates protein equilibrium ensembles by generating thousands of statistically independent structures per hour on a single GPU. BioEmu integrates over 200 milliseconds of molecular dynamics (MD) simulations, static structures and experimental protein stabilities using novel training algorithms. It captures diverse functional motions—including cryptic pocket formation, local unfolding, and domain rearrangements—and predicts relative free energies with 1 kcal/mol accuracy compared to millisecond-scale MD and experimental data. BioEmu provides mechanistic insights by jointly modeling structural ensembles and thermodynamic properties. This approach amortizes the cost of MD and experimental data generation, demonstrating a scalable path toward understanding and designing protein function.

[read more]

Negative capacitance overcomes Schottky-gate limits in GaN high-electron-mobility transistors

by Asir Intisar Khan, Jeong-Kyu Kim, et al.

For high-electron-mobility transistors based on two-dimensional electron gas (2DEG) within a quantum well, such as those based on AlGaN/GaN heterostructure, a Schottky-gate is used to maximize the amount of charge that can be induced and thereby the current that can be achieved. However, the Schottky-gate also leads to very high leakage current through the gate electrode. Adding a conventional dielectric layer between the nitride layers and gate metal can reduce leakage; but this comes at the price of a reduced drain current. Here, we used a ferroic HfO2ZrO2 bilayer as the gate dielectric and achieved a simultaneous increase in the ON current and decrease in the leakage current, a combination otherwise not attainable with conventional dielectrics. This approach surpasses the conventional limits of Schottky GaN transistors and provides a new pathway to improve performance in transistors based on 2DEG.

[read more]

Education and the World As “Rorschach Test”

The Rorschach test is a projective psychological test in which subjects’ perceptions of inkblots are recorded and then analyzed using psychological interpretation, complex algorithms, or both. Some psychologists use this test to examine a person’s personality characteristics and emotional functioning.

It is also called “an Inkblot test.”

We use this test as a metaphor that suggests that people see what they want to see and choose to see.

Here’s an example based on the Verdi opera La Forza del Destino. The black intellectual leader, William E.B. Du Bois, sees it as a veiled racial story where Professor Niall Ferguson of Stanford/Harvard tells the story of how he emerged from a performance of the opera on the very day that Britain devalued the pound sterling in 1992.

Black Wednesday refers to September 16, 1992, when a collapse in the pound sterling forced Britain to withdraw from the European Exchange Rate Mechanism (European Monetary System).

Thus the opera, La Forza del Destino is both a Verdi opera and a kind of “raw material” for personal and private interpretation with Du Bois seeing racism and Ferguson seeing national or financial fate.

La Forza del Destino or The Power of Fate, (often translated The Force of Destiny) is an Italian opera by Giuseppe Verdi. The libretto was written by Francesco Maria Piave based on a Spanish drama, Don Álvaro o la fuerza del sino (1835), by Ángel de Saavedra, 3rd Duke of Rivas, with a scene adapted from Friedrich Schiller’s Wallensteins Lager. It was first performed in the Bolshoi Kamenny Theatre of Saint Petersburg, Russia, on 10 November, 1862 O.S. (N.S. 22 November).

(Wikipedia)

Synopsis—Act 1

The mansion of Leonora’s family, in Seville.

Don Alvaro is a young nobleman from South America (presumably Peru) who is part Indian and who has settled in Seville where he is not very well regarded.

He falls in love with Donna Leonora, the daughter of the Marquis of Calatrava, but Calatrava is determined that she shall marry only a man of the highest birth. Despite knowing her father’s aversion to Alvaro, Leonora is deeply in love with him, and she determines to give up her home and country in order to elope with him. In this endeavor, she is aided by her confidante, Curra. (Me pellegrina ed orfana—“Exiled and orphaned far from my childhood home”).

When Alvaro arrives to fetch Leonora, she hesitates: she wants to elope with him, but part of her wants to stay with her father; she eventually pulls herself together, ready for their elopement. However, the Marquis unexpectedly enters and discovers Leonora and Alvaro together. He threatens Alvaro with death, and in order to remove any suspicion as to Leonora’s purity, Alvaro surrenders himself. As he flings down his pistol, it goes off, mortally wounding the Marquis, who dies cursing his daughter.

This is the racial aspect on which W.E.B. Du Bois focuses.

Niall Ferguson, by contrast, sees a different “Rorschach inkblot” and hones in on the financial policy story which went like this:

Soros’ Quantum Fund began a massive sell-off of pounds on Tuesday, 15 September 1992. The Exchange Rate Mechanism stated that the Bank of England was required to accept any offers to sell pounds. However, the Bank of England only accepted orders during the trading day. When the markets opened in London the next morning, the Bank of England began their attempt to prop up their currency as per the decision made by Norman Lamont and Robin Leigh-Pemberton, the then Chancellor of the Exchequer and Governor of the Bank of England respectively. They began buying orders to the amount of 300 million pounds twice before 8:30 AM to little effect.

The Bank of England’s intervention was ineffective because Soros’ Quantum Fund was dumping pounds far faster. The Bank of England continued to buy and Quantum continued to sell until Lamont told Prime Minister John Major that their pound purchasing was failing to produce results.

At 10:30 AM on 16 September, the British government announced a rise in the base interest rate from an already high 10 to 12 percent to tempt speculators to buy pounds. Despite this and a promise later the same day to raise base rates again to 15 percent, dealers kept selling pounds, convinced that the government would not stick with its promise. By 7:00 that evening, Norman Lamont, then Chancellor, announced Britain would leave the ERM and rates would remain at the new level of 12 percent; however, on the next day the interest rate was back on 10%.

It was later revealed that the decision to withdraw had been agreed at an emergency meeting during the day between Norman Lamont, Prime Minister John Major, Foreign Secretary Douglas Hurd, President of the Board of Trade Michael Heseltine, and Home Secretary Kenneth Clarke (the latter three all being staunch pro-Europeans as well as senior Cabinet Ministers), and that the interest rate hike to 15% had only been a temporary measure to prevent a rout in the pound that afternoon.”

For W.E.B. Du Bois, the story within the story of the Verdi opera is the color-line that governs the world, while Ferguson sees the story as a “dramatic” instance of financial and economic force or working out of trends that becomes a destiny.

Hence people see what they choose to see and interpreting and seeing are wrapped up in each other.

Students should assimilate this aspect of the world.

Note: one source of the Du Bois interpretation of the opera comes from the University of Chicago book, Travels in the Reich: 1933-1945 (edited by Oliver Lubrich, 2012) which has a chapter on Du Bois in Germany in the thirties where he plunges into music and opera and highlights this Verdi one.

Physics AI Predicts That Earth Goes Around the Sun

from Nature Briefing:

Hello Nature readers,

Today we learn that a computer Copernicus has rediscovered that Earth orbits the Sun, ponder the size of the proton and see a scientific glassblower at work.

Physicists have designed artificial intelligence that thinks like the astronomer Nicolaus Copernicus by realizing the Sun must be at the center of the Solar System. (NASA/JPL/SPL)

AI ‘Discovers’ That Earth Orbits the Sun [PDF]

A neural network that teaches itself the laws of physics could help to solve some of physics’ deepest questions. But first it has to start with the basics, just like the rest of us. The algorithm has worked out that it should place the Sun at the centre of the Solar System, based on how movements of the Sun and Mars appear from Earth.

The machine-learning system differs from others because it’s not a black that spits out a result based on reasoning that’s almost impossible to unpick. Instead, researchers designed a kind of ‘lobotomizedneural network that is split into two halves and joined by just a handful of connections. That forces the learning half to simplify its findings before handing them over to the half that makes and tests new predictions.

Next FDA Chief Will Face Ongoing Challenges

U.S. President Donald Trump has nominated radiation oncologist Stephen Hahn to lead the Food and Drug Administration (FDA). If the Senate confirms Hahn, who is the chief medical executive of the University of Texas MD Anderson Cancer Center, he’ll be leading the agency at the centre of a national debate over e-cigarettes, prompted by a mysterious vaping-related illness [archived PDF] that has made more than 2,000 people sick. A former FDA chief says Hahn’s biggest challenge will be navigating a regulatory agency under the Trump administration, which has pledged to roll back regulations.


Do We Know How Big a Proton Is?
[PDF]

A long-awaited experimental result has found the proton to be about 5% smaller than the previously accepted value. The finding seems to spell the end of the ‘proton radius puzzle’: the measurements disagreed if you probed the proton with ordinary hydrogen, or with exotic hydrogen built out of muons instead of electrons. But solving the mystery will be bittersweet: some scientists had hoped the difference might have indicated exciting new physics behind how electrons and muons behave.

Contingency Plans for Research After Brexit

The United Kingdom should boost funding for basic research and create an equivalent of the prestigious European Research Council (ERC) if it doesn’t remain part of the European Union’s flagship Horizon Europe research-funding program [archived PDF]. That’s the conclusion of an independent review of how UK science could adapt and collaborate internationally after Brexit — now scheduled for January 31, 2020.

Nature’s 150th anniversary

A Century and a Half of Research and Discovery

This week is a special one for all of us at Nature: it’s 150 years since our first issue, published in November 1869. We’ve been working for well over a year on the delights of our anniversary issue, which you can explore in full online.

10 Extraordinary Nature Papers

A series of in-depth articles from specialists in the relevant fields assesses the importance and lasting impact of 10 key papers from Nature’s archive. Among them, the structure of DNA, the discovery of the hole in the ozone layer above Antarctica, our first meeting with Australopithecus and this year’s Nobel-winning work detecting an exoplanet around a Sun-like star.

A Network of Science

The multidisciplinary scope of Nature is revealed by an analysis of more than 88,000 papers Nature has published since 1900, and their co-citations in other articles. Take a journey through a 3D network of Nature’s archive in an interactive graphic. Or, let us fly you through it in this spectacular 5-minute video.

Then dig deeper into what scientists learnt from analyzing tens of millions of scientific articles for this project.

150 Years of Nature, in Graphics

An analysis of the Nature archive reveals the rise of multi-author papers, the boom in biochemistry and cell biology, and the ebb and flow of physical chemistry since the journal’s first issue in 1869. The evolution in science is mirrored in the top keywords used in titles and abstracts: they were ‘aurora’, ‘Sun’, ‘meteor’, ‘water’ and ‘Earth’ in the 1870s, and ‘cell’, ‘quantum’, ‘DNA’, ‘protein’ and ‘receptor’ in the 2010s.

Evidence in Pursuit of Truth

A century and a half has seen momentous changes in science, and Nature has changed along with it in many ways, says an Editorial in the anniversary edition. But in other respects, Nature now is just the same as it was at the start: it will continue in its mission to stand up for research, serve the global research community and communicate the results of science around the world.

Features & Opinion

Nature covers: from paste-up to Photoshop

Nature creative director Kelly Krause takes you on a tour of the archive to enjoy some of the journal’s most iconic covers, each of which speaks to how science itself has evolved. Plus, she touches on those that didn’t quite hit the mark, such as an occasion of “Photoshop malfeasance” that led to Dolly the sheep sporting the wrong leg.

Podcast: Nature bigwigs spill the tea

In this anniversary edition of BackchatNature editor-in-chief Magdalena Skipper, chief magazine editor Helen Pearson and editorial vice president Ritu Dhand take a look back at how the journal has evolved over 150 years, and discuss the part that Nature can play in today’s society. The panel also pick a few of their favorite research papers that Nature has published, and think about where science might be headed in the next 150 years.

Where I Work

Scientific glassblower Terri Adams uses fire and heavy machinery to hand-craft delicate scientific glass apparatus. “My workbench hosts an array of tools for working with glass, many of which were custom-made for specific jobs,” says Adams. “Each tool reminds me of what I first used it for and makes me consider how I might use it again.” (Leonora Saunders for Nature)

Quote of the Day

“At the very least … we should probably consider no longer naming *new* species after awful humans.”

Scientists should stop naming animals after terrible people — and consider renaming the ones that already are, argues marine conservation biologist and science writer David Shiffman. (Scientific American)

Yesterday was Marie Skłodowska Curie’s birthday, and for the occasion, digital colorist Marina Amaral breathed new life into a photo of Curie in her laboratory

(If you have recommended people before and you want them to count, please ask them to email me with your details and I will make it happen!) Your feedback, as always, is very welcome at briefing@nature.com.

Flora Graham, senior editor, Nature Briefing