World-Watching: How Nature Paints With Color

[from Quanta Magazine]

by Yasemin Saplakoglu

When objects interact with light in particular ways — by absorbing or reflecting it — we see in color. A sunset’s orange hues and the ocean’s deep blues inspire artists and dazzle observant admirers. But colors are more than pretty decor; they also play a critical role in life. They attract mates, pollinators and seed-spreaders, and signal danger. And the same color can mean different things to different organisms: A red bird might attract a mate, while a red berry might warn off a hungry human.

For color to communicate meaning, systems to produce it had to evolve, by developing pigments to absorb certain wavelengths of light or structures to reflect them. Organisms also had to produce the machinery to perceive color. When you look out into a forest, you might see lush greenery dappled with yellowish sunlight and pink blooms. But this forest scene would look different if you were a bird or a fly. Color-perception machinery — which include photoreceptors in our eyes that recognize and distinguish light — can differ between species. While humans can’t see ultraviolet light, some birds can. While dogs can’t see red or green, many humans can. Even within species there’s some variation: People who are colorblind have trouble distinguishing some combinations, such as green and red. And many organisms can’t see color at all.

Within one planet, many colorful worlds exist. But how did colors evolve in the first place?

What’s New and Noteworthy

To pinpoint when different kinds of color signals may have evolved, researchers recently reviewed many papers, covering hundreds of millions of years of evolutionary history, to bring together information from the fossil record and phylogenetic trees (diagrams that depict evolutionary relationships between species). Their analysis across the tree of life suggested that color signals likely evolved much later than color vision. It’s likely that color vision evolved twice, developing independently in arthropods and fish, between 400 million and 500 million years ago. Then plants started using bright colors to attract pollinators and animals to disperse their seeds, and then animals started using colors to warn off predators and eventually to attract mates.

One of the most common colors that we see in nature is green. However, this isn’t a color signal: It’s a result of photosynthesis. Most plants absorb almost all the photons in the red and blue light spectra but only 90% of the green photons. The remaining 10% are reflected, making the plants appear green to our eyes. But why did they evolve to do this? According to a model, this makes photosynthetic machinery more stable, suggesting that sometimes evolution favors stability over efficiency.

The majority of colors in nature are produced by pigments that absorb or reflect different wavelengths of light. While many plants can produce these pigments on their own, most animals can’t; instead, they acquire pigments from their diet. Some pigments, though, are hard to acquire, so some animals instead rely on nanoscale structures that scatter light in particular ways to create “structural colors.” For example, the shell of the blue-rayed limpet has layers of transparent crystals, each of which diffracts and reflects a sliver of the light spectrum. When the layers grow to a precise thickness, around 100 nanometers, the wavelengths in each layer interact with one another, canceling each other out — except for blue. The result is the appearance of a bright blue limpet shell.

Education and the “Knowability” Problem

There was a wonderful PBS Nature episode in 2006 called “The Queen of Trees” [full video, YouTube] which went into details about the survival strategy and rhythms and interactions with the environment of one tree in Africa and all the complexities this involves:

This Nature episode explores the evolution of a fig tree in Africa and its only pollinator, the fig wasp. This film takes us through a journey of intertwining relationships. It shows how the fig (queen) tree is life sustaining for an entire range of species, from plants, to insects, to other animals and even mammals. These other species are in turn life-sustaining to the fig tree itself. It could not survive without the interaction of all these different creatures and the various functions they perform. This is one of the single greatest documented (on video) examples of the wonders of our natural world; the intricacies involved for survival and ensuring the perpetual existence of species.

It shows us how fragile the balance is between survival and extinction.

One can begin to see that the tree/animal/bacteria/season/roots/climate interaction is highly complex and not quite fully understood to this day.

The fact that one tree yields new information every time we probe into it gives you a “meta” (i.e., meta-intelligent) clue that final theories of the cosmos and fully unified theories of physics will be elusive at best and unreachable at worst. If one can hardly pin down the workings of a single tree, does it sound plausible that “everything that is” from the electron to galaxy clusters to multiverses will be captured by an equation? The objective answer has to be: not particularly.

Think of the quest of the great unifiers like the great philosopherphysicist Hermann Weyl (died in 1955, like Einstein):

Since the 19th century, some physicists, notably Albert Einstein, have attempted to develop a single theoretical framework that can account for all the fundamental forces of nature–a unified field theory. Classical unified field theories are attempts to create a unified field theory based on classical physics. In particular, unification of gravitation and electromagnetism was actively pursued by several physicists and mathematicians in the years between the two World Wars. This work spurred the purely mathematical development of differential geometry.

Hermann Klaus Hugo Weyl (9 November, 1885 – 8 December, 1955) was a German mathematician, theoretical physicist and philosopher. Although much of his working life was spent in Zürich, Switzerland and then Princeton, New Jersey, he is associated with the University of Göttingen tradition of mathematics, represented by David Hilbert and Hermann Minkowski.

His research has had major significance for theoretical physics as well as purely mathematical disciplines including number theory. He was one of the most influential mathematicians of the twentieth century, and an important member of the Institute for Advanced Study during its early years.

Weyl published technical and some general works on space, time, matter, philosophy, logic, symmetry and the history of mathematics. He was one of the first to conceive of combining general relativity with the laws of electromagnetism. While no mathematician of his generation aspired to the “universalism” of Henri Poincaré or Hilbert, Weyl came as close as anyone.

Weyl is quoted as saying:

“I am bold enough to believe that the whole of physical phenomena may be derived from one single universal world-law of the greatest mathematical simplicity.”

(The Trouble with Physics, Lee Smolin, Houghton Mifflin Co., 2006, page 46)

This reminds one of Stephen Hawking’s credo that he repeated often and without wavering, that the rational human mind would soon understand “the mind of God.”

This WeylHawkingEinstein program of “knowing the mind of God” via a world-equation seems both extremely charming and beautiful, as a human quest, but potentially mono-maniacal à la Captain Ahab in Moby-Dick. The reason that only Ishmael survives the sinking of the ship, the Pequod, is that he has become non-monomaniacal and accepts the variegatedness of the world and thus achieves a more moderate view of human existence and its limits. “The Whiteness of the Whale” chapter in the novel gives you Melville’s sense (from 1851) of the unknowability of some final world-reality or world-theory or world-equation.