Education: Disease, History and Lit

The Italian writer Giovanni Boccaccio lived through the plague as it ravaged the city of Florence in 1348. The experience inspired him to write The Decameron.

The Plague of 1665 in England was a major upheaval affecting Isaac Newton’s life.

The 1984 movie, A Passage to India (David Lean) set in 1920s India, has a scene where the ever-present lethal threat of cholera is discussed as Doctor Aziz lies sick of a fever.

The W. Somerset Maugham novel, The Painted Veil (2006 movie) is also about cholera in the Chinese countryside in the 1920s.

Manzoni’s 1827 The Betrothed, the most famous classic novel of Italian literature, centers on the plague to drive the story.


Etymologically, the term “pest” derives from the Latin word “pestis” (pest, plague, curse). Hardly any disease had such cultural and historical relevance as the bubonic plague. Throughout the centuries, the plague was the most terrifying infectious contagious disease which generated a series of demographic crises. The plague epidemics influenced the evolution of society biologically and culturally speaking. The Black Death was one of the most devastating pandemics in human history, is estimated to have killed 30%–60% of Europe’s population, reducing the world’s population from an estimated 450 million to between 350 and 375 million in 1400. This has been seen as having created a series of religious, social and economic upheavals, which had profound effects on the course of European history. It took 150 years for Europe’s population to recover.

The plague returned at various times, killing more people, until it left Europe in the 19th century. Modern epidemiology (Dr. John Snow, London) has its roots in cholera management and water sanitation as well as waste management.

Education involves seeing disease as a major protagonist in all history and not as a footnote.

The classic Plagues and Peoples should accordingly be studied by every student: Plagues and Peoples is a book on epidemiological history by William Hardy McNeill, published in 1976.

It was a critical and popular success, offering a radically new interpretation of the extraordinary impact of infectious disease on cultures and world history itself.

Education and Finality Claims

Stephen Hawking kept saying he wanted to discover the ultimate world-equation. This would be the final “triumph of the rational human mind.”

This would presumably imply that if one had such a world-equation, one could infer or deduce all the formalisms in a university physics book with its thousand pages of equations, puzzles and conundrums, footnotes and names and dates.

While hypothetically imaginable, this seems very unlikely because too many phenomena are included, too many topics, too many rules and laws.

There’s another deep problem with such Hawking-type “final equation” quests. Think of the fact that a Henri Poincaré (died in 1912) suddenly appears and writes hundreds of excellent science papers. Think of Paul Erdős (died in 1996) and his hundreds of number theory papers. Since the appearance of such geniuses and powerhouses is not knowable in advance, the production of new knowledge is unpredictable and would “overwhelm” any move towards some world-equation which was formulated without the new knowledge since it was not known at the time that the world-equation was formalized.

Furthermore, if the universe is mathematical as MIT’s Professor Max Tegmark claims, then a Hawking-type “world-equation” would cover all mathematics without which parts of Tegmark’s universe would be “unaccounted for.”

In other words, history and the historical experience, cast doubt on the Stephen Hawking “finality” project. It’s not just that parts of physics don’t fit together. (General relativity and quantum mechanics, gravity and the other three fundamental forces.) Finality would also imply that there would be no new Stephen Hawking who would refute the world-equation as it stands at a certain point in time. In other words, if you choose, as scientists like Freeman Dyson claim that the universe is a “vast evolutionary” process, then the mathematical thinking about it is also evolving or co-evolving and there’s no end.

There are no final works in poetry, novels, jokes, language, movies or songs and there’s perhaps also no end to science.

Thus a Hawking-type quest for the final world-equation seems enchanting but quixotic.

Education and Wittgenstein “Language Games”

It is instructive for a student to get a grip on the whole question of “language games” à la Wittgenstein, who says that these “games” (i.e., ambiguities) are central to thinking in general and thinking about philosophy in particular.

Let’s make up our own example and step back from the meaning of the preposition “in.”

The comb is in my back pocket has nothing to do with the “in” of “he’s in a good mood” or “he’s in a hurry” or “he’s in a jam or pickle” or “he’s in trouble.” Furthermore, in modern deterministic neuroscience language, a good mood is a footnote to brain and blood chemicals so that means that a good mood is in you via chemicals and not you in it.

Does the word “jam” here mean difficulty or somehow the condiment called jam? You don’t know and can never without more information (i.e., meaningful context).

Imagine we take a time machine and are standing in front of the home of Charles Dickens in London in his time say in the 1840s. They say he’s working on a new novel called Oliver Twist.

Someone says: a novel by Dickens is a kind of “fictional universe.” Shall we say that because Dickens is in his home (at home) in London (though in London is itself confusing since London as a city is not like a pocket to a comb or wallet) his fictional universe is “in” the universe which might be a multiverse according to current cosmological speculations? That’s not what we mean. The fictional universe of Dickens is a shared cultural abstraction involving his stories, characters, people absorbing his tales, his mind and our mind, books and discussions. A fictional universe is as “weird” as the other universe. The preposition “in” does not begin to capture what’s going on which is socio-cultural and not “physicalistic.”

We begin to intuit that everyday language which we use and handle as the most obvious thing in the world in constant use, is completely confusing once you look at it more clearly.

Einstein’s friend at Princeton, Kurt Gödel, looked into language as a logical phenomenon and concluded that it’s entirely puzzling that two people could actually speak and understand one another given the ambiguities and open-endedness of language.

A language-game (German: Sprachspiel) is a philosophical concept developed by Ludwig Wittgenstein, referring to simple examples of language use and the actions into which the language is woven. Wittgenstein argued that a word or even a sentence has meaning only as a result of the “rule” of the “game” being played. Depending on the context, for example, the utterance “Water!” could be an order, the answer to a question, or some other form of communication.

In his work, Philosophical Investigations (1953), Ludwig Wittgenstein regularly referred to the concept of language-games. Wittgenstein rejected the idea that language is somehow separate and corresponding to reality, and he argued that concepts do not need clarity for meaning. Wittgenstein used the term “language-game” to designate forms of language simpler than the entirety of a language itself, “consisting of language and the actions into which it is woven” and connected by family resemblance (German: Familienähnlichkeit).

The concept was intended “to bring into prominence the fact that the speaking of language is part of an activity, or a form of life,” which gives language its meaning.

Wittgenstein develops this discussion of games into the key notion of a “language-game.”

Gödel saw that language has deep built-in ambiguities which were as puzzling as math and logic ones:

Gödel’s (died in 1978) incompleteness theorems are two theorems of mathematical logic that demonstrate the inherent limitations of every formal axiomatic system capable of modeling basic arithmetic. These results, published by Kurt Gödel in 1931, are important both in mathematical logic and in the philosophy of mathematics.

Take any simple sentence: say, “men now count.”

Without a human context of meaning, how would you ever decide if this means count in the sense of numeracy (one apple, two apples, etc.) or something entirely from another domain (i.e. males got the vote in a certain country and now “count” in that sense).

When you say, “count me in” or count me out,” how does that make any sense without idiomatic language exposure?

If you look at all the meanings of “count” in the dictionary and how many set phrases or idioms involve the word “count,” you will immediately get the sense that without a human “life-world” (to use a Husserl phrase), you could never be sure of any message or sentence at all involving such a fecund word.

One task of real education is to put these difficulties on the student’s plate and not avoid them.

Linguistics as such is not what’s at issue but rather a “meta-intelligent” sense of language, written or spoken as highly mysterious with or without the research into vocal cords, language genes (FOXP2, say) or auditory science and the study of palates or glottal stops and fricatives, grammars and syntax.

Seeing this promotes deep education (i.e., where understanding touches holism in an enchanting way).