

Required Report: Required - Public Distribution **Date:** August 19, 2025

Report Number: AS2025-0017

Report Name: Stone Fruit Annual

Country: Australia

Post: Canberra

Report Category: Stone Fruit

Prepared By: Zeljko Biki

Approved By: Lazaro Sandoval

Report Highlights:

Stone fruit production in Australia is forecast to decline in marketing year (MY) 2025/26, primarily due to the Bureau of Meteorology's (BOM) projection of a wetter-than-average spring. If realized, these conditions are expected to negatively affect both yields and fruit quality. Cherry production is forecast to fall by ten percent, while peach and nectarine production is expected to drop by seven percent. Growing conditions to date have been favorable, with excellent winter chill hours supporting strong bud burst and production potential. However, the anticipated shift to wet spring weather is likely to undermine these early-season advantages. As a result, cherry exports are forecast to decrease by nine percent and peach and nectarine exports by seven percent. Imports, though starting from a low base, are projected to rise modestly in MY 2025/26.

EXECUTIVE SUMMARY

The 2025/26 Australian stone fruit season began under favorable conditions, with most production regions experiencing average to below-average minimum temperatures during late autumn and winter. These conditions provided excellent chill hours, encouraging strong bud development and promising yield potential.

However, from September to November 2025, the Bureau of Meteorology forecasts a high likelihood of above-median rainfall in most cherry, peach, and nectarine producing regions. Prolonged wet conditions during spring increase the risk of poor pollination, heightened disease pressure, and waterlogging—all factors that can reduce fruit size, flavor, and overall quality.

Cherry production is forecast to fall by ten percent, and peach and nectarine production by seven percent. Export volumes are expected to follow suit, with cherries down nine percent (returning to around the five-year average) and peaches and nectarines down seven percent.

Imports, sourced almost entirely from the United States, are expected to rise slightly from their current low levels. A key constraint remains the absence of imported peaches and nectarines in Australia's two major supermarket chains, which continue to stock imported cherries. Re-engaging these retailers offers a potential avenue to increase future import volumes.

CHERRY

Background

Australia's main cherry-growing regions include the Huon Valley in Tasmania, the Goulburn Valley in central Victoria, Young and Orange in central eastern New South Wales, and the Adelaide Hills in southeast South Australia (Figure 1). Smaller production areas include Stanthorpe in southern Queensland, the southeastern corner of Western Australia, the Yarra Valley in Victoria, and scattered pockets in central New South Wales.

Tasmania, the southernmost and coolest producing region, has the longest growing season and consistently produces large, high-quality cherries. However, its harvest occurs later than other regions—mainly after the peak Christmas demand—prompting a strong focus on export markets. In contrast, more northern regions experience warmer, less optimal conditions but benefit from earlier harvests starting in late October, aligning with peak domestic demand in the lead-up to Christmas.

The harvest season for the producers in the warmest climates of Queensland, New South Wales, South Australia, and Western Australia typically commences in mid to late October and is completed by around mid-January (see Table 1). A little further south in Victoria, the harvest period generally commences in early to mid-November and finishes in mid to late February. These regions are able to

take advantage of the period leading up to Christmas when cherries are in the greatest demand domestically. Tasmania is the southernmost producing region with the coolest climate, where harvest commences in late December and is typically completed by mid-February. As the majority of Tasmanian cherries are exported, harvest timing aligns well with the strong demand during Chinese New Year in China and Hong Kong.

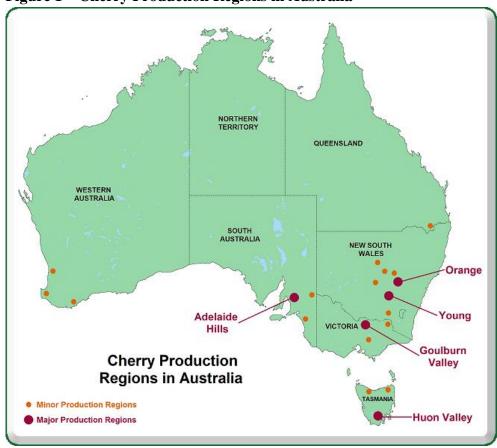


Figure 1 - Cherry Production Regions in Australia

Source: Information from Cherry Growers Australia Inc

Table 1 - Cherry Harvest Seasonality in Australia

Charry Harvoot Saganality in Australian																				
Cherry Harvest Seasonality in Australian																				
	October		November			December			January			February								
Victoria																				
New South Wales																				
South Australia																				
Tasmania																				
Western Australia																				
Queensland																				

Source: Cherry Growers Australia Inc.

Notes: Main harvest period Minor harvest period

Sweet cherries are typically more sensitive to climatic variables than other fruit crops. The most critical climatic conditions for growing cherries are:

- Sufficiently low temperatures during winter to accumulate adequate chilling units (dormancy period), typically over 800 hours at temperatures between 2°C and 12°C (36°F to 54°F), ensure even and full bud break in spring.
- During the blossoming period, temperatures above 13°C (54°F) are needed to ensure bees are active and support an optimized pollination process.
- No severe frosts between bud swell and shuck fall (when flower petals have fallen away from young fruit).
- Low rainfall when trees are in blossom (typically late August to late October) as rain can cause reduced pollination and blossom infection by bacteria and fungi, hindering fruit set.
- Low rainfall and no hail during ripening are also important to minimize fruit damage and reduce disease pressure. Rainfall during warmer temperatures when the fruit is ripening creates a humid environment, enabling pests to proliferate.
- Low humidity throughout the growing season to minimize disease outbreaks.
- Low to moderate winds are important to minimize physical injury to trees and fruit, typically from rubbing against tree limbs. However, adequate wind is important to ensure sufficient aeration in the orchard to minimize humidity within the crop, particularly after rainfall.
- Sufficient water for irrigation to meet tree water demands.

Some of the growing condition issues can be mitigated via tree trellising support system designs, and pruning techniques, along with hail netting structures over the orchard.

Cherries in Australia are predominantly eaten fresh, with relatively small quantities sold frozen, dried or canned. Cherries are used to produce a range of products such as jams, liqueurs, brandy, ice cream and confectionaries.

Production

MY 2025/26 Production Forecast

Australian cherry production in MY 2025/26 is forecast at 18,000 metric tons (MT), down from the MY 2024/25 estimate of 20,000 MT. This is slightly below the previous five-year average and around 10 percent lower than the prior year's volume (Figure 2). The expected decline is largely due to the BOM's forecast for a wetter-than-average spring, which—if realized—would reduce the volume of marketable cherries and adversely affect fruit quality. While the exact extent of the impact is uncertain this far ahead of harvest, production is unlikely to reach the recent peak levels of around 20,000 MT recorded in the past decade.

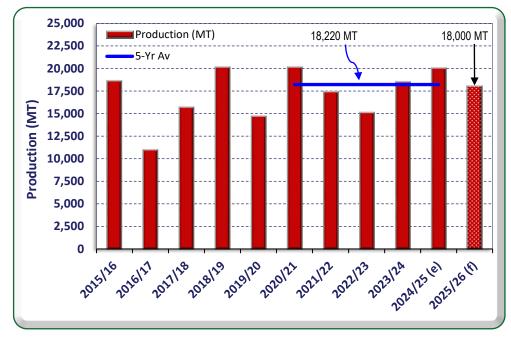
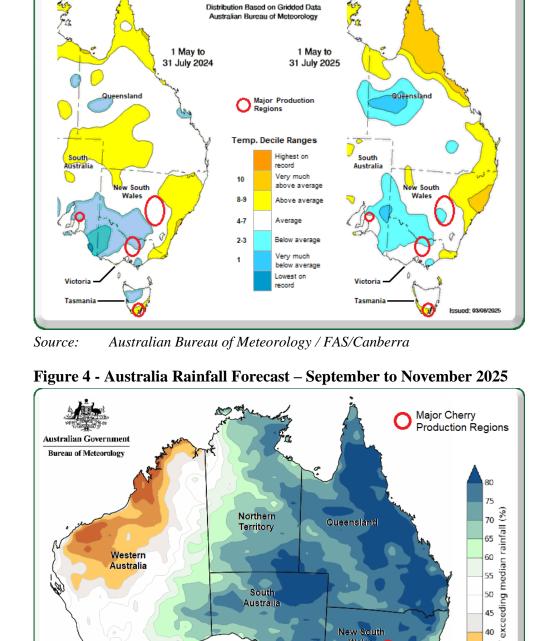


Figure 2 – Australian Cherry Production


Source: PSD online and FAS/Canberra estimates and forecasts

Note: (e) = estimate, (f) = forecast

During late autumn and winter, most major cherry-growing regions recorded average to below-average minimum temperatures, similar to the previous year (Figure 3). Tasmania, despite registering above-average temperatures relative to its long-term average, remained as cool—or cooler—than other production regions due to its southerly location. These conditions provided ample winter chill hours, supporting strong bud burst potential for MY 2025/26.

The BOM's outlook is for a high chance of exceeding median rainfall from September to November 2025 (see Figure 4) for all cherry-producing regions other than Tasmania. The forecast for Tasmanian cherry growers is for around average rainfall throughout the spring period, which is preferred especially in years with ample irrigation water availability, which is typical for Tasmania. Dryer conditions reduce the risk of disruptions during pollination, fungal infestations, and excessive soil moisture. Growers have greater control over the development and quality of the fruit with irrigation water rather than excessive spring rains. If the forecast conditions for Tasmania persist throughout the December to February harvest period, they are likely to produce a large volume of high-quality fruit.

In contrast, New South Wales, South Australia, and Victoria are expected to face wetter-than-average conditions during November harvest. Excessive rainfall at this stage increases the risk of fruit splitting, brown rot, and softer cherries with shorter shelf life—factors that reduce export suitability.

South Australia

> Victoria Tasmania

New South

Chance of 25

20

Model run: 28/07/2025

Issued: 31/07/2025

Figure 3 – Minimum Temperature Deciles in Australia – May to July 2024 and 2025

Minimum Temperature Deciles

Australian Bureau of Meteorology / FAS/Canberra Source:

Chance of exceeding the median rainfall for

September to November 2025

Model: ACCESS-S2

Base period: 1981-2018

Water availability in the irrigated Goulburn Valley (northern Victoria) is expected to be lower than recent years due to reduced storage levels. However, cherries' high market value allows growers to compete effectively for traded irrigation water.

Overall, Tasmanian growers are well-positioned for a strong season, while growers in New South Wales, South Australia, and Victoria face increased quality risks from forecast spring rainfall. These conditions underpin the reduced marketable production forecast for MY 2025/26.

MY 2024/25 Production Estimate

FAS/Canberra's estimate for MY 2024/25 remains at 20,000 MT, unchanged from the prior forecast (12 months prior). The industry had broadly experienced good production conditions across all the major cherry producing regions. However, Tasmanian growers experienced a period of rain in early December 2024 that had an adverse impact on the quality of the fruit.

Dry harvest conditions are optimal for reducing splitting, brown rot, and soft fruit that shorten shelf life. In MY 2024/25, Victoria, Tasmania, and South Australia generally enjoyed such conditions (Figure 5). New South Wales, however, experienced above-average rainfall during harvest, which impacted quality but far less severely than in the early 2020s.

The early-December 2024 rainfall in Tasmania coincided with gibberellic acid applications. While this did not significantly reduce total marketable production, it resulted in softer fruit and lower export packout rates than would otherwise have been achieved.

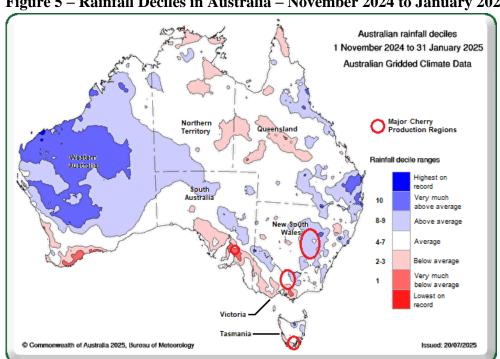


Figure 5 – Rainfall Deciles in Australia – November 2024 to January 2025

Australian Bureau of Meteorology Source:

Consumption

MY 2025/26 Consumption Forecast

Domestic cherry consumption in MY 2025/26 is forecast at 15,500 MT, down eight percent from the prior year. The decline reflects an expected 10 percent reduction in marketable production, largely due to the forecast for above-average spring rainfall.

Tasmanian growers are expected to benefit from near-average rainfall over the coming months. If these conditions persist through harvest, the state is likely to produce a large volume of high-quality cherries for both export and domestic markets. In contrast, growers in other major production regions face a high probability of above-average rainfall during the months leading into and including the early harvest period. Prolonged wet conditions would reduce marketable yields and limit domestic supply.

Heavy rainfall during harvest not only lowers total marketable production but also reduces fruit quality, decreasing the share suitable for export and increasing volumes sold domestically. This dynamic has been factored into the forecast, resulting in the estimated 15,500 MT of domestic consumption for MY 2025/26.

MY 2024/25 Consumption Estimate

FAS/Canberra estimates MY 2024/25 domestic consumption at 16,800 MT, slightly below the previous forecast (12 months prior) of 17,000 MT. Although production remained in line with earlier expectations, lower-quality fruit from Tasmania reduced export volumes, increasing domestic availability. However, this was largely offset by lower-than-anticipated cherry imports.

Trade Exports

MY 2025/26 Export Forecast

FAS/Canberra forecasts fresh cherry exports at 4,000 MT in MY 2025/26, down from an estimated 4,400 MT in MY 2024/25. The decline is driven by the forecast for above-average rainfall during spring and the early harvest period in all major producing regions except Tasmania. If realized, these conditions would reduce both the volume of marketable fruit and the proportion meeting export quality standards. Despite this decrease, the forecast export volume aligns with the previous five-year average.

Victoria and Tasmania consistently account for around 90 percent of Australia's cherry exports (Figure 6). While Tasmania's production outlook is positive, concerns remain over Victoria's export potential due to weather risks. On balance, total exports are expected to return to the five-year average.

Official trade data for MY 2024/25 show a sharp rise in Victoria's share of exports and a corresponding decline for Tasmania. Industry sources suggest this shift is overstated, as the volume of Tasmanian

exports was likely similar to the previous year, despite fruit quality from Tasmania being compromised in MY 2024/25. Tasmanian cherries are exported via air freight from Victoria and industry sources indicate that some shipments from Tasmania are known to have been recorded as originating from Victoria.

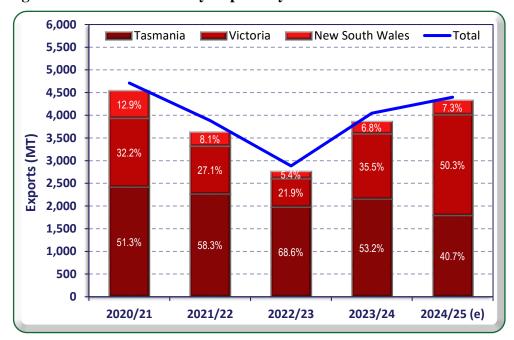


Figure 6 – Australian Cherry Exports by State and Total – MY 2020/21 to 2024/25

Source: Australian Bureau of Statistics

Note: MY 2024/25 = November 2024 to June 2025, (e) = estimate

The top five export destinations—Hong Kong, Vietnam, Taiwan, Singapore, and China—account for 75–80 percent of exports, a pattern that has remained stable despite year-to-year fluctuations in volumes (Figure 7). These Asian markets are geographically close, allowing for cost-effective air freight compared with more distant destinations.

For the forecast year, FAS/Canberra anticipates an increase in the volume of exports from Tasmania, but this is expected to be overshadowed by a greater decrease in the volume of exports from Victoria. Trade with the top five markets is anticipated to maintain similar proportions to recent years.

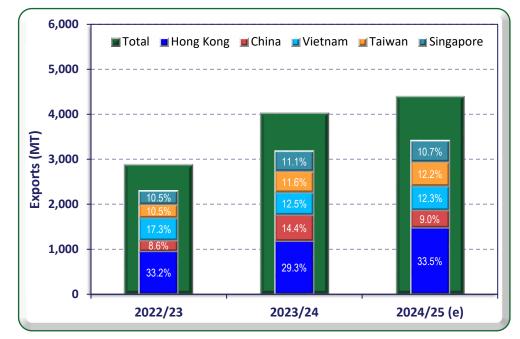


Figure 7 – Major Australian Cherry Export Destinations – MY 2022/23 to 2024/25

Source: Australian Bureau of Statistics

Note: MY 2024/25 = November 2024 to June 2025, (e) = estimate

MY 2024/25 Export Estimate

Australian cherry exports predominantly occur from November to March, so MY 2024/25 (November 2024 through June 2025) is virtually finalized, with an estimated 4,400 MT. This is 600 MT lower than the FAS/Canberra forecast (from 12 months prior). The shortfall was not due to lower overall production but to a lower-than-expected volume of export-quality fruit from Tasmania. Early-December rainfall coincided with gibberellic acid applications, producing softer cherries that were unsuitable for many export markets.

Imports

MY 2025/26 Import Forecast

FAS/Canberra forecasts cherry imports to rise slightly to 1,500 MT for MY 2025/26, from the 1,200 MT estimate for MY 2024/25. Stone fruit imports are counter-seasonal and almost entirely from the United States, arriving via air freight.

Over the last 10 years cherry imports have broadly declined from a range of 2,000 to 2,500 MT down to around 1,000 to 1,500 MT (see Figure 8). In the past the major retail grocery store chains presented cherries in boxes allowing consumers to select their own cherries and at their preferred quantities. Industry sources indicate that this resulted in a greater level of in-store spoilage losses that impacted on the profitability of this product line. They have transitioned over recent years to present cherries in 300-

gram packages similar to those for berries. This may have reduced spoilage and improved profitability for the retailer, but it is likely to have contributed to reducing the overall demand for out-of-season cherries.

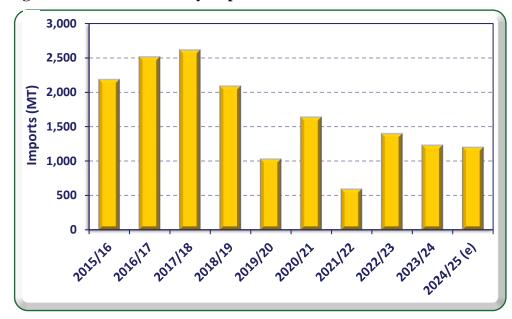


Figure 8 – Australian Cherry Import Volumes – MY 2015/16 to 2024/25

Source: Australian Bureau of Statistics

Note: MY 2024/25 = November 2024 to June 2025, (e) = estimate

MY 2024/25 Import Estimate

Cherry imports for MY 2024/25 are estimated at 1,200 MT. Volumes in May and June 2025 were firm at 570 MT. July typically records the highest monthly imports, followed by a sharp decline in August and no trade from October through April. Current trade patterns suggest the marketing year will close in line with the forecast.

Table 2 - Production, Supply, and Distribution of Fresh Cherries

Cherries (Sweet&Sour), Fresh	2023/2	024	2024/2	2025	2025/2026			
Market Year Begins	Nov 20	023	Nov 2	024	Nov 2025			
Australia	USDA Official	New Post	USDA Official	New Post	USDA Official	New Post		
Commercial Production (MT)	18500	18500	20000	20000	0	18000		
Non-Comm. Production (MT)	0	0	0	0	0	(
Production (MT)	18500	18500	20000	20000	0	18000		
Imports (MT)	1000	1200	2000	1200	0	1500		
Total Supply (MT)	19500	19700	22000	21200	0	19500		
Domestic Consumption (MT)	15500	15700	17000	16800	0	15500		
Exports (MT)	4000	4000	5000	4400	0	4000		
Withdrawal From Market (MT)	0	0	0	0	0	(
Total Distribution (MT)	19500	19700	22000	21200	0	19500		
(HA), (1000 TREES), (MT)								

OFFICIAL DATA CAN BE ACCESSED AT: PSD Online Advanced Query

PEACH/NECTARINE

Background

Approximately three-quarters of Australia's peaches and nectarines are produced in Victoria, primarily in two key regions: the Goulburn Valley in central Victoria and Sunraysia in the state's northwest. New South Wales accounts for around one-eighth of national production, spread across multiple locations without a single dominant growing area. Additional production occurs in southern Queensland, the Adelaide Hills in southeastern South Australia, and the southeastern corner of Western Australia (see Figure 9). In contrast to cherries, peaches and nectarines are produced in only minimal quantities in Tasmania.

In general, the more northern and warmer production regions begin harvesting earlier in the season. While this provides a marketing advantage by supplying fruit ahead of southern regions, it also tends to result in fruit with slightly lower sugar content and less flavor compared to fruit from cooler southern regions. Harvest in northern areas typically runs from October to March, while in southern regions it usually extends from November to April.

Growing conditions for peaches and nectarines are broadly similar to those for cherries, with two key differences: peaches and nectarines require fewer winter chill hours and are more commonly grown in slightly warmer regions.

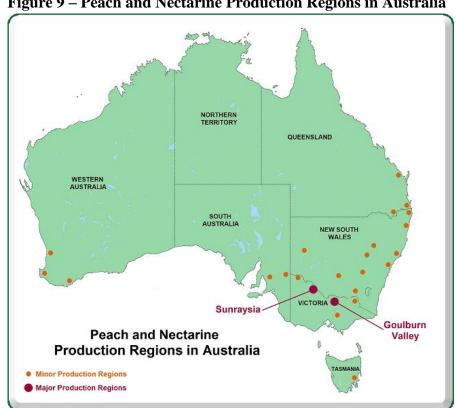


Figure 9 - Peach and Nectarine Production Regions in Australia

Source: Information from Summerfruit Australia Ltd

Production

MY 2025/26 Production Forecast

FAS/Canberra forecasts peach and nectarine production to decline to 70,000 MT in MY 2025/26, down from an estimated 75,000 MT in MY 2024/25. Early-stage growing conditions for the forecast crop are generally favorable, supported by excellent winter chill accumulation, average rainfall to date, and adequate irrigation water availability.

However, similar to the situation for cherries, the BOM projects a well-above-average likelihood of exceeding median rainfall (see Figure 4) in the major producing regions of the Goulburn Valley and Sunraysia in Victoria. While wet conditions can reduce total output, the greater concern is the potential impact on fruit quality if these conditions persist into the harvest period. Excess rainfall at harvest can lower the proportion of marketable fruit, reducing volumes suitable for export—an outcome similar to what occurred in MY 2023/24.

Industry reports indicate that the cool winter and ample chill hours to date should promote strong bud burst, setting the crop up for good potential yields. Growers generally prefer below-average rainfall during the growing season, as this allows better control over fruit development and quality—particularly when irrigation water is plentiful. While average spring rainfall (September to November) is manageable, well-above-average rainfall increases risks during pollination, encourages disease pressure, and can lead to excessive soil moisture, all of which may reduce fruit quality and flavor.

At the start of the irrigation season in September 2025, water availability in the major irrigated stone fruit regions of the Goulburn Valley and Sunraysia is expected to be substantially lower than in the previous year (see Figure 10). However, the forecast for above-average spring rainfall—particularly in the catchments feeding these irrigation areas—is likely to boost allocations as the season progresses. If realized, this will help ease grower concerns and moderate traded irrigation water prices.

In the five years prior to the COVID-19 pandemic, Australian peach and nectarine production was relatively stable, averaging close to 110,000 MT. Since MY 2020/21, however, a combination of factors has reduced output, bringing the five-year average down to just over 75,000 MT (see Figure 11).

Pandemic-related labor shortages in MY 2020/21 and MY 2021/22 limited the amount of fruit harvested for market. This was followed by an unseasonably wet spring and wetter-than-normal harvest in MY 2023/24. Supply chain disruptions during this period also increased input costs—particularly for fertilizer, crop protection chemicals—and labor costs for both orchard management and harvest. These pressures have contributed to a reduction in planted area, with industry sources indicating no significant expansion in the near term. The forecast for a wet spring in MY 2025/26 is expected to continue constraining production.

Nevertheless, there is scope for longer-term recovery if older orchards are replaced with newer, higher-yielding varieties. With favorable seasonal conditions, this could lift production in future years.

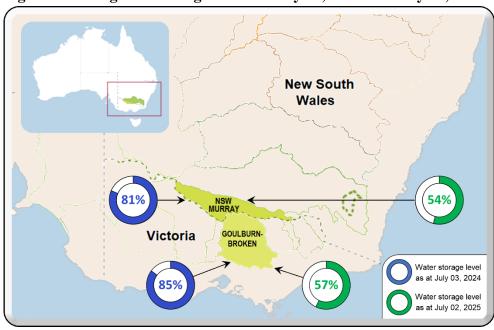


Figure 10 – Irrigation Storage Levels – July 03, 2024 and July 02, 2025

Source: Murray Darling Basin Authority

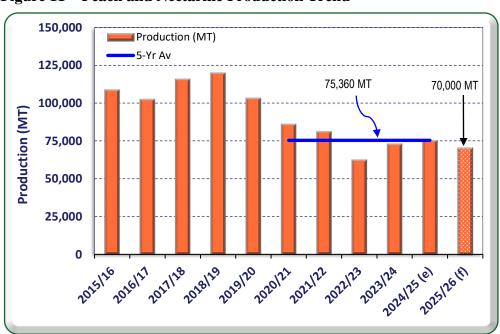


Figure 11 – Peach and Nectarine Production Trend

Source: PSD online and FAS/Canberra estimates and forecasts

Note: (e) = estimate, (f) = forecast

MY 2024/25 Production Estimate

FAS/Canberra estimates MY 2024/25 production at 75,000 MT, a three percent increase from the previous year's 72,900 MT. This improvement reflects more favorable seasonal conditions compared with MY 2023/24, when above-average rainfall during the main harvest period (November 2023 to January 2024) in the Goulburn Valley and Sunraysia regions of Victoria reduced production (see Figure 12).

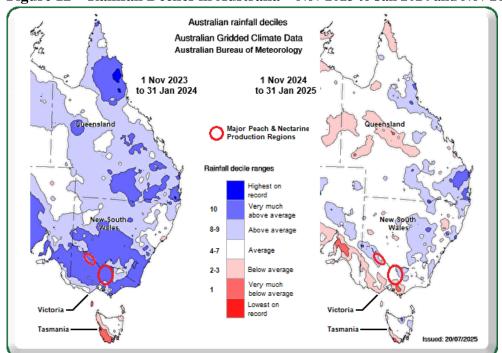


Figure 12 – Rainfall Deciles in Australia – Nov 2023 to Jan 2024 and Nov 2024 to Jan 2025

Source: Aust

Australian Bureau of Meteorology

Consumption

MY 2025/26 Consumption Forecast

FAS/Canberra forecasts domestic consumption to fall by six percent to 59,300 MT in MY 2025/26, down from a revised 63,200 MT in MY 2024/25. The decline is primarily attributed to the forecast 5,000-MT drop in production. In addition, anticipated poorer seasonal conditions for the 2025/26 crop are expected to reduce average fruit quality compared with MY 2024/25, which may temper consumer demand.

MY 2024/25 Consumption Estimate

FAS/Canberra has revised the peach and nectarine consumption estimate for MY 2024/25 downward from the previous forecast (12 months prior) of 77,500 MT to 63,200 MT. This adjustment reflects a

substantially lower production estimate for the season. Fruit quality across the domestic retail network was generally reported as good, and therefore quality was not a factor in the reduced consumption level.

Trade

Exports

MY 2025/26 Export Forecast

FAS/Canberra forecasts fresh peach and nectarine exports to decline to 11,200 MT in MY 2025/26, down from an estimated 12,400 MT in MY 2024/25. The reduction is primarily due to lower anticipated production. Additionally, concerns over above-average rainfall during the spring months, potentially extending into harvest, are expected to adversely affect fruit quality, limiting the volume suitable for export.

Peaches have a soft flesh and short shelf life, making them generally unsuitable for long sea freight. In contrast, nectarines have firmer flesh, making them more viable for sea transport. Approximately two-thirds of total exports are nectarines, with peaches accounting for the remaining one-third (see Figure 13).

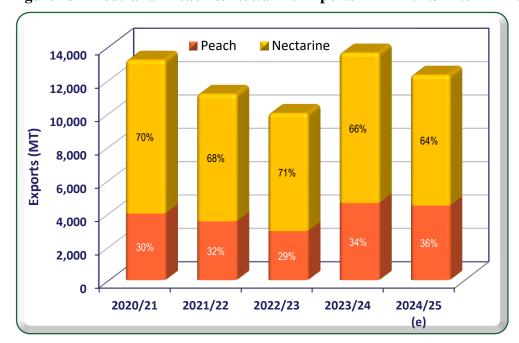


Figure 13 – Australian Peach & Nectarine Exports – MY 2020/21 to MY 2024/25

Source: Australian Bureau of Statistics

Note: MY 2024/25 = November 2024 to June 2025, (e) = estimate

Most peaches are exported via air freight (see Figure 14). During the pandemic, high air freight costs reduced the share of peach exports relative to nectarines, but this ratio has since returned to prepandemic levels.

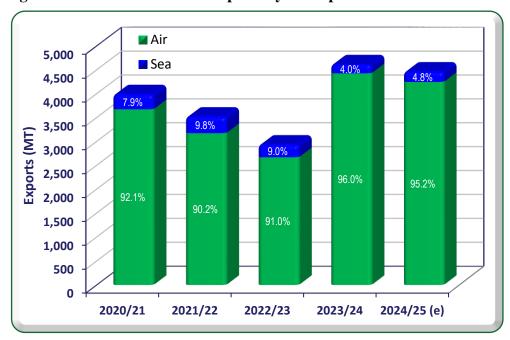


Figure 14 – Australian Peach Exports by Transport Mode – MY 2020/21 - MY 2024/25

Source: Australian Bureau of Statistics

Note: MY 2024/25 = November 2024 to June 2025, (e) = estimate

Australian peach exports are relatively diversified, with about 75 percent shipped to five main destinations, primarily in Asia. Until MY 2024/25, China was the largest market, but its share has declined as Singapore emerged as the leading destination. In MY 2024/25, exports to the United Arab Emirates also grew substantially (see Figure 15).

For nectarines, China has historically accounted for over three-quarters of exports. However, both the volume and proportion to China decreased in MY 2024/25, with notable growth in shipments to the United Arab Emirates (see Figure 16).

5,000 **■**Total ■ Singapore 4,500 China United Arab Emirates Malaysia ■ Saudi Arabia 4,000 3,500 3,000 Exports (MT) 2,500 2,000 32% 1,500 40% 16% 28%

Figure 15 – Australia Peach Exports – Nov to Jun 2020/21 to 2024/25

Source: Australian Bureau of Statistics

2020/21

1,000

500

0

Note: MY 2024/25 = November 2024 to June 2025, (e) = estimate

2021/22

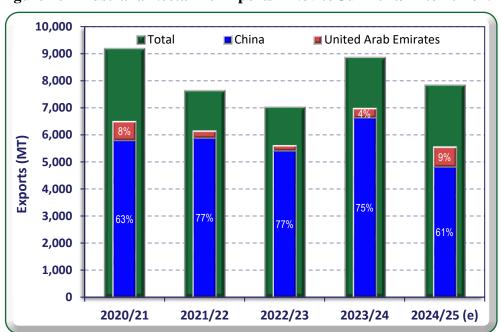


Figure 16 – Australia Nectarine Exports – Nov to Jun 2020/21 to 2024/25

2022/23

2023/24

2024/25 (e)

Source: Australian Bureau of Statistics

Note: MY 2024/25 = November 2024 to June 2025, (e) = estimate

China began importing peaches and nectarines only nine years ago, sourcing exclusively from Chile and Australia over the past seven years. Australia has recently supplied about 15 percent of China's imports, though this share fell to nine percent in MY 2024/25 (see Figure 17). The decline in shipments to China has been offset by increased exports to Singapore and the United Arab Emirates.

Chinese consumers tend to prefer white-flesh (sub-acid) peaches and nectarines, which are generally sweeter than yellow-flesh varieties. Australian growers are aware of this preference and have adjusted new plantings accordingly.

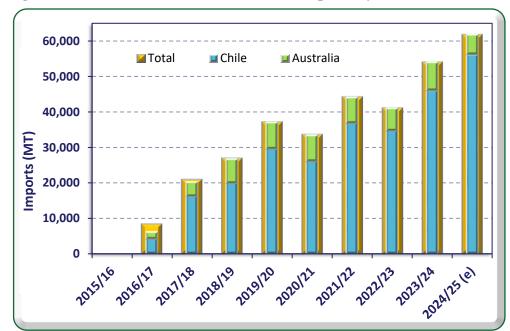


Figure 17 – Australian Peach & Nectarine Imports by China

Source: Trade Data Monitor

Note: MY 2024/25 = November 2024 to June 2025, (e) = estimate

MY 2024/25 Export Estimate

The export estimate for MY 2024/25 has been revised downward to 12,400 MT from the earlier forecast of 14,000 MT. This adjustment reflects the lower production estimate for the season. Despite the smaller crop, fruit quality was generally good, and the share of production meeting export standards remained consistent with typical seasons.

Imports

MY 2025/26 Import Forecast

Imports are forecast to increase modestly to 800 MT in MY 2025/26, up from a downward revised estimate of 600 MT in MY 2024/25. While historical import volumes were significantly higher, they

remain constrained by the withdrawal of Australia's two largest retail chains from stocking imported peaches and nectarines following a three-week suspension of U.S. stone fruit imports in MY 2023/24...

Peach and nectarine imports are counter-seasonal and sourced almost entirely from the United States via air freight. In MY 2023/24, the suspension occurred just before the peak production period in the U.S. Pacific Northwest, Australia's primary source region.

Industry reports indicate that the quality of U.S. imports in MY 2024/25 has been high, with strong consumer reception. These imports have primarily been distributed through second-tier retail chains and independent greengrocers. Positive consumer feedback this season could support modest import growth in MY 2025/26.

Promotional campaigns highlighting the availability of out-of-season peaches and nectarines could encourage major supermarket chains to resume imports, potentially increasing volumes in the coming years.

MY 2024/25 Import Estimate

The import estimate for MY 2024/25 has been revised downward to 600 MT, from the earlier forecast (from 12 months prior) of 1,500 MT. This reduction reflects the continued absence of the two major supermarket chains from the import market. The withdrawal followed the MY 2023/24 U.S. suspension, which created uncertainty among importers and disrupted the entire season's trade.

Table 3 - Production, Supply, and Distribution of Fresh Peaches & Nectarines

Peaches & Nectarines, Fresh	2023/2	024	2024/2	2025	2025/2026			
Market Year Begins	Nov 20)23	Nov 20	024	Nov 2025			
Australia	USDA Official	New Post	USDA Official	New Post	USDA Official	New Post		
Commercial Production (MT)	85000	72800	90000	75000	0	70000		
Non-Comm. Production (MT)	0	0	0	0	0	(
Production (MT)	85000	72800	90000	75000	0	70000		
Imports (MT)	700	200	1500	600	0	800		
Total Supply (MT)	85700	73000	91500	75600	0	70800		
Domestic Consumption (MT)	72300	59400	77500	63200	0	59300		
Exports (MT)	13400	13600	14000	12400	0	11500		
Withdrawal From Market (MT)	0	0	0	0	0	(
Total Distribution (MT)	85700	73000	91500	75600	0	70800		
(HA), (1000 TREES), (MT)					<u> </u>			

Attachments:

No Attachments