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Why Has U.S. Inflation Become Harder to Forecast?

We examine whether the U.S. rate of price inflation has become harder to
forecast and, to the extent that it has, what changes in the inflation pro-
cess have made it so. The main finding is that the univariate inflation pro-
cess is well described by an unobserved component trend-cycle model with
stochastic volatility or, equivalently, an integrated moving average process
with time-varying parameters. This model explains a variety of recent uni-
variate inflation forecasting puzzles and begins to explain some multivariate
inflation forecasting puzzles as well.
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great moderation.

THE RATE OF price inflation in the United States has become
both harder and easier to forecast, depending on one’s point of view. On the one hand,
inflation (along with many other macroeconomic time series) is much less volatile
than it was in the 1970s or early 1980s, and the root mean squared error of naı̈ve
inflation forecasts has declined sharply since the mid-1980s. In this sense, inflation
has become easier to forecast: the risk of inflation forecasts, as measured by mean
squared forecast errors (MSFE), has fallen. On the other hand, the improvement
of standard multivariate forecasting models, such as the backward-looking Phillips
curve, over a univariate benchmark has been less in percentage terms since the mid-
1980s than before. This point was forcefully made by Atkeson and Ohanian (2001)
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(henceforth, AO), who found that, since 1984 in the United States, backward-looking
Phillips curve forecasts have been inferior to a naı̈ve forecast of 12-month inflation
by its average rate over the previous 12 months. In this sense, inflation has become
harder to forecast, at least, it has become much more difficult for an inflation forecaster
to provide value added beyond a univariate model. One can speculate on economic
reasons why this might be so, but a first step in informing such speculation is pinning
down what, precisely, have been the changes in the inflation process that led to these
changing properties of inflation forecasts.

This paper proposes a parsimonious model of the changes in the univariate process
for postwar U.S. quarterly inflation, in which inflation is represented as the sum of
two components, a permanent stochastic trend component and a serially uncorrelated
transitory component. Since the mid-1950s, there have been large changes in the vari-
ance of the permanent disturbance, whereas the variance of the transitory disturbance
has remained essentially constant. According to our estimates, the standard devia-
tion of the permanent disturbance was moderate—for GDP inflation, approximately
0.5 percentage points at an annual rate—from the mid-1950s through approximately
1970; it was large, nearly 1.5 percentage points, during the 1970s through 1983; and
it declined sharply in the mid-1980s to its value of the 1960s. Since 1990 this standard
deviation has declined further and now stands at a record low since 1954, less than
0.2 percentage points.

The time-varying trend-cycle model is equivalent to a time-varying first-order in-
tegrated moving average (IMA(1,1)) model for inflation, in which the magnitude of
the MA coefficient varies inversely with the ratio of the permanent to the transitory
disturbance variance. Accordingly, the MA coefficient for inflation was small (ap-
proximately 0.25) during the 1970s but subsequently increased (to approximately
0.65 for the 1984–2004 period).

The time-varying trend-cycle model of the univariate inflation process succinctly
explains the main features of the historical performance of univariate inflation fore-
casts. During the 1970s the inflation process was well approximated by a low-order
autoregression (AR), but in the mid-1980s the coefficients of that autoregression
changed and, even allowing for those changes, the low-order autoregression became
a less accurate approximation to the inflation process since 1984. The changing AR
coefficients and the deterioration of the low-order AR approximation accounts for
the relatively poor performance of recursive and rolling AR forecasts in the 1984–
2004 sample. Moreover, it turns out that the AO year-upon-year forecast, represented
as a linear combination of past inflation, is close to the optimal linear combina-
tion implied by the post-1984 IMA model at the four-quarter horizon, although
this is not so at shorter horizons for the post-1984 period nor is it so at any hori-
zon during the pre-1984 period, cases in which the AO forecasts perform relatively
poorly.

This time-varying trend-cycle model also explains the excellent recent forecasting
performance of an IMA model published by Nelson and Schwert (1977), which they
estimated using data from 1953 to 1971. During the 1970s and early 1980s, the
variance of the permanent component was an order of magnitude larger than it was
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in the 1950s and 1960s, and the Nelson–Schwert (1977) model did not provide good
forecasts during the late 1970s and early 1980s. During the late 1980s and 1990s,
however, the size of the permanent component fell back to its earlier levels, and the
Nelson–Schwert model was again a good approximation.

The time-varying trend-cycle model provides a strategy for real-time univariate
forecasting. Currently the Nelson–Schwert (1977) forecast is performing very well,
and the AO forecast is performing nearly as well, at least at long horizons. But the
inflation process has changed in the past, it could change again, and if it does, the per-
formance of fixed-parameter models like AO and Nelson–Schwert will deteriorate.
We therefore consider it imprudent to adopt a fixed-parameter inflation forecasting
model either as a benchmark or for real-time forecasting. Instead, our pseudo-out-of-
sample forecasting results suggest two approaches to time-varying trend-cycle models
that could be effective in the face of such changes: an unobserved components model
with stochastic volatility, implemented using a non-Gaussian filter, and an IMA(1,1)
model with moving average coefficient estimated using a 10-year rolling window
of past observations. The rolling IMA(1,1) model is simpler, but adapts to chang-
ing parameters less quickly, than the unobserved components/stochastic volatility
model.

The changing univariate inflation dynamics also help to explain the dramatic break-
down of recursive and rolling autoregressive distributed lag (ADL) inflation forecasts
based on an activity measure. One reason for the deterioration in the relative per-
formance of the ADL activity-based forecasts is that the variance of the activity
measures has decreased since the mid-1980s (this is the “Great Moderation”), so in
a sum-of-squares sense their predictive content, assuming no changes in coefficients,
has declined. But the coefficients of the ADL models have also changed. Because
the ADL forecasts generalize a univariate autoregression, they inherit the defects of
the univariate AR forecasts in the second period. The evidence on the stability and
statistical significance of the coefficients on lagged activity variables in the ADL is
mixed, and sampling variability impedes making sharp statements about the stability
of the Phillips curve after allowing for changes in the coefficients on lagged inflation.
Although a complete analysis of Phillips curve forecasts that incorporate these time-
varying coefficients is beyond the scope of this paper, we illustrate some implications
of our univariate findings for multivariate forecasting models.

One thing this paper does not do is link the changing time-series properties of
inflation to more fundamental changes in the economy. The obvious explanation is
that these changes stem from changes in the conduct of monetary policy in the post-
1984 era, moving from a reactive to a forward-looking stance (see, e.g., the recent
discussion in Estrella 2005, who explains the post-1980s failure of the term structure
to have predictive content for inflation in terms of changes in Fed policy). But obvious
explanations are not always the right ones, and there are other possible reasons for the
decrease in the variability of the permanent component of inflation. To a considerable
extent, these other possibilities are similar to those raised in discussions of the great
moderation, including changes in the structure of the real economy, the deepening of
financial markets, and possible changes in the nature of the structural shocks hitting
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the economy. We do not attempt to sort through these explanations here, but simply
raise them to point out that the question of deeper causes for these changes merits
further research.

The literature on inflation forecasting and the empirical Phillips curve is too large
to survey here comprehensively, but several recent papers that are closely related
to this one are noteworthy. Fischer, Liu, and Zhou (2002) and Orphanides and Van
Norden (2005) confirmed Atkeson and Ohanian’s (2001) basic point that, since the
mid-1980s, it has been quite difficult for inflation forecasts to improve on simple
univariate models. Roberts (2004) identified a flattening of the Phillips curve and a
change in the coefficients on lagged inflation in unemployment-rate Phillips curves
occurring around 1984, the break date we focus on in much of our analysis. Clark
and McCracken (2006) stress that the sampling variability of pseudo out-of-sample
forecast comparison statistics is so large that the statistical case for the breakdown
in Phillips curve forecasts is not watertight, despite their poor recent performance in
economic terms. We too find considerable sampling variability in forecast compari-
son measures and return to this point below. Dossche and Everaert (2005), Harvey,
Trimbur, and van Dijk (2005), and Leigh (2005) also implement unobserved com-
ponents models of inflation (for different purposes), although their models omit the
stochastic volatility that is the central part of our story.

The rest of the paper is organized as follows. Section 1 lays out the main forecasting
facts and puzzles. Sections 2–4 examine changes in the univariate inflation process.
Section 5 lays out some implications of the univariate results for activity-based Phillips
curve forecasts. Section 6 concludes.

1. U.S. INFLATION FORECASTS: FACTS AND PUZZLES

This section summarizes the performance of models for forecasting U.S. inflation
using a pseudo out-of-sample forecast comparison methodology, with a focus on an-
swering the question of whether inflation has become harder to forecast. One purpose
of this section is to provide a consistent and concise summary of miscellaneous related
results that appear elsewhere in the literature on inflation forecasting and volatility
(see Ang, Bekaert, and Wei 2005, Atkeson and Ohanian 2001, Clark and McCracken
2006, Stock and Watson 2002, Tulip 2005; for complementary results for the United
Kingdom, see Benati and Mumtaz 2005). The section begins with a description of the
data and the forecasting models, then turns to the results. To keep things simple, in
this section we focus on split-sample results, comparing the period 1970:I–1983:IV
to the later period 1984:I–2004:IV. The sample split date of 1984 coincides with esti-
mates of the onset of the great moderation and is the split date chosen by Atkeson and
Ohanian (2001). These split sample results convey the main facts about the changing
behavior of inflation forecasts. In subsequent sections, we examine formal evidence
for a break at an unknown date and consider methods that allow for continual rather
than discrete changes in the inflation process and the forecasting relations.
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1.1 Data

The paper focuses on GDP price index inflation. As a sensitivity analysis, results are
also presented for the personal consumption expenditure deflator for core items (PCE-
core), the personal consumption expenditure deflator for all items (PCE-all), and the
consumer price index (CPI, the official CPI-U). We consider a number of activity
variables: the unemployment rate (all, 16+, seasonally adjusted) (u), the logarithm
of real GDP (y), the capacity utilization rate, building permits, and the Chicago Fed
National Activity Index (CFNAI) (for discussion of the choice of activity predictors,
see, for example, stock and Watson 1999). For series with revisions, the May 2005
vintage is used.

All empirical work uses quarterly data. Quarterly values for monthly series were
computed by averaging the monthly values for the three months in the quarter; if
logarithms are taken, they are logarithms of the average value of the monthly indexes.1

For the main results, the full sample is from 1960:I through 2004:IV, with earlier data
used to initialize regressions with lags; results that use a different sample are noted
explicitly.

Some predictors appear in “gap” form, denoted (for example) as ugap1-sided and
ugap2-sided for the one- and two-sided unemployment gaps. Gaps are computed as
deviation of the univariate activity series (e.g., u) from a lowpass filter with pass band
corresponding to periodicities of 60 quarters and higher. Two-sided gaps are computed
as deviations from the symmetric two-sided MA(80) approximation to the optimal
lowpass filter after padding the endpoints of the series with backcasts and forecasts
computed from an estimated AR(4) model. One-sided gaps are computed using the
same MA(80) filter replacing future observations with recursively constructed AR(4)
forecasts. Two-sided gaps are useful for analyzing historical relationships but are not
feasible for forecasting.

1.2 Forecasting Models and Pseudo Out-of-Sample Methodology

We begin by considering two univariate forecasting models and one multivariate
forecasting model, implemented using different predictors. Let π t = 400 ln(Pt/Pt −1),
where Pt is the quarterly price index, and let h-period average inflation (at an annual
rate) be πh

t = h−1∑h−1
i=0 πt−i . Adopt the notation that subscript |t on a variable denotes

the forecast made using data through time t, so πh
t+h|t is the forecast of πh

t+h made
using data through t.

AR(AIC). Forecasts are made using a univariate autoregression, specified in terms
of the change of inflation with r lags, where r is estimated using the Akaike Infor-
mation Criterion (AIC). Multistep forecasts are computed by the direct method, that
is, by projecting h-period ahead inflation on r lags; by using the direct (not iterated)

1. The analysis was also performed using end-of-quarter aggregation with no important changes in
the qualitative conclusions. Many of the coefficient values reported below are sensitive to the method of
temporal aggregation (as they should be) but the magnitude and timing of the changes in parameters and
the consequent conclusions about forecasting are not.



8 : MONEY, CREDIT AND BANKING

multistep method, the AR forecasts are nested within the Phillips Curve forecasts dis-
cussed below. Specifically, the h-step ahead AR(AIC) forecast was computed using
the model,

πh
t+h − πt = µh + αh(B)�πt + vh

t , (1)

where µh is a constant, αh(B) is a lag polynomial written in terms of the backshift
operator B, vh

t is the h-step ahead error term, and the superscript h denotes the quantity
for the h-step ahead regression. Note that this specification imposes that π t has a unit
root.

AO. Atkeson–Ohanian (2001) (AO) forecasted the average four-quarter rate of in-
flation as the average rate of inflation over the previous four quarters. They did not
forecast at other horizons so there is some ambiguity in specifying the AO forecast at
other horizons. Because the AO forecast is essentially a random walk forecast, and a
random walk forecast is the same at all horizons, we extend the AO forecast to other
horizons without modification. Thus the AO forecast is,

πh
t+h|t = π4

t = 1

4
(πt + · · · + πt−3). (2)

Backward-looking Phillips curve (PC). The PC forecasts are computed as direct ADL
forecasts, that is, by adding a predictor to (1) to form the autoregressive distributed
lag (ADL) specification,

πh
t+h − πt = µh + αh(B)�πt + βhxgapt + δh(B)�xt + wh

t , (3)

where xgapt is the gap variable based on the variable xt, �xt is the first difference of
xt, and wh

t is the error term. The lag lengths of αh(B) and δh(B) are chosen by AIC.
The PC forecast using ut as the gap variable (so ut = xgapt = xt) and �ut as �xt is
denoted PC-u; this is the conventional backward-looking Phillips curve specified in
terms of the level of the unemployment rate with a constant NAIRU, omitting supply
shock control variables. The forecasts PC-�u, PC-�y, PC-�CapUtil, PC-�Permits,
and PC-CFNAI omit gap variables and only include the stationary predictors �u, �y,
�capacity utilization, �building permits, and the CFNAI, respectively. The PC-�y
forecast, which uses only the growth rate of GDP as a predictor and omits a gap term,
is the activity-based inflation forecast recommended by Orphanides and van Norden
(2005).

Pseudo out-of-sample forecast methodology. All forecasts were computed using the
pseudo out-of-sample forecast methodology, that is, for a forecast made at date t,
all estimation, lag length selection, etc. were performed using only data available
through date t. The forecasts in this section are recursive, so that forecasts at date t
are based on all the data (beginning in 1960:I) through date t. The period 1960–1970
was used for initial parameter estimation. The forecast period 1970:I–2004:IV was
split into the two periods 1970:I–1983:IV and 1984:I–2004:IV.
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TABLE 1

PSEUDO OUT-OF-SAMPLE FORECASTING RESULTS FOR GDP INFLATION

Multivariate forecasting model: π h
t+h − π t = µh + αh(B)�π t + βhxgapt + δh(B)�xt +uh

t

1970:I–1983:IV 1984:I–2004:IV

h = 1 h = 2 h = 4 h = 8 h = 1 h = 2 h = 4 h = 8
RMSFEh=4

84−04
RMSFEh=4

70−83

AR(AIC) RMSFE 1.72 1.75 1.89 2.38 0.78 0.68 0.62 0.73
Relative MSFEs

AR(AIC) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.33
AO 1.95 1.57 1.06 1.00 1.22 1.10 0.89 0.84 0.30
PC-u 0.85 0.92 0.88 0.61 0.95 1.11 1.48 1.78 0.42
PC-�u 0.87 0.87 0.86 0.64 1.06 1.27 1.83 2.21 0.48
PC-ugap1-sided 0.88 0.99 0.98 0.87 1.06 1.29 1.84 2.39 0.45
PC-�y 0.99 1.06 0.93 0.58 1.05 1.06 1.23 1.53 0.37
PC-ygap1-sided 0.94 0.97 0.99 0.78 0.97 0.97 1.25 1.55 0.37
PC-CapUtil 0.85 0.88 0.79 0.55 0.95 1.01 1.35 1.52 0.43
PC-�CapUtil 1.02 1.00 0.87 0.64 1.03 1.10 1.30 1.51 0.40
PC-Permits 0.93 1.02 0.98 0.78 1.08 1.23 1.31 1.52 0.38
PC-�Permits 1.02 1.04 0.99 0.86 1.00 1.00 1.00 1.02 0.33
PC-CFNAI . . . . 1.11 1.27 1.86 2.25 .

NOTES: The first row of entries are root mean squared forecast errors (RMSFEs) of the AR(AIC) benchmark forecast. For the remaining
rows, the first eight numerical columns report the MSFE of the forecasting model, relative to the AR(AIC) benchmark (hence AR(AIC) =
1.00). The multivariate forecasts are denoted PC-x, where x is the activity variable used in the autoregressive distributed lag model
stated in the table header. For the PC-u, PC-ugap1-sided , PC-y, PC-ygap1-sided , PC-CapUtil, and PC-Permits forecasts, the variable
xgapt is, respectively, ut , ugapt

1-sided , etc. For the remaining forecasts, xgap is omitted and �xt is given in the forecast name,
e.g., for PC-�u, �xt = �ut . In the PC forecasts, the lag lengths for αh(B) and δh(B) were chosen independently by AIC, with
between 0 and 4 lags, and the forecasts are direct (not iterated). The final column reports the reduction in RMSFE from the
1970–1983 period to the 1984–2004 period for the row forecasting method, at the four-quarter horizon. Bold entries denote the lowest
MSFE for that period/horizon. All forecasts are pseudo out-of-sample, with parameters estimated using an expanding window. Results
for the CFNAI (the Chicago Fed National Activity Index) are only computed for the second sample because of a shorter span of data availability.

1.3 Results

The results of the pseudo out-of-sample forecast experiment are summarized in
Table 1. The first row in each panel reports the root mean square forecast error
(RMSFE) of the benchmark AR(AIC) forecast in percentage points at an annual rate,
at the indicated forecast horizon h. The remaining rows report the MSFE of the row
forecast, relative to the AR(AIC) (so the relative MSFE of the AR(AIC) forecast is
1.00); an entry less than one indicates that the candidate forecast has a lower MSFE
than the AR(AIC) benchmark.

Table 1 does not report standard errors for the relative MSFEs; however, standard
errors for the univariate model MSFEs are reported in Table 4 in the next section. As is
emphasized by Clark and McCracken (2006), the standard errors can be large, ranging
from 0.05 to 0.20 for four-quarter ahead forecasts. Despite these large standard errors,
the results in Table 1 suggest four conclusions.

(i) The RMSFE of forecasts of GDP inflation has declined. In this sense, inflation
has become easier to forecast. The magnitude of this reduction is striking.
Whatever its other merits or demerits, the AR(AIC) forecast is simple to produce
and has been a staple of economic forecasters for decades. A forecaster who used
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this method consistently from 1984 to 2004 would have had a RMSFE of only
0.62 percentage points for annual GDP inflation, down from 1.89 percentage
points over 1970–1983, a reduction of two-thirds. As the final column of Table 1
demonstrates, even those forecasting models with performance that deteriorates
in the second period, relative to the first, still exhibit reductions in forecast
uncertainty of at least one-half.

(ii) The relative performance of the PC forecasts deteriorated substantially from
the first period to the second. For example, during the 1970–1983 pe-
riod at the four-quarter horizon, the PC-u forecast of GDP inflation outper-
formed the AR(AIC) benchmark (relative MSFE = 0.88), but during the
1984–2004 period it performed worse than the AR(AIC) benchmark (relative
MSFE = 1.48). The change in relative performance is even larger at h = 8,
but there are fewer nonoverlapping observations at this horizon so the h =
8 relative MSFEs have considerable sampling uncertainty (cf. Clark and
McCracken 2006). This deterioration of PC forecasts is found for all the activ-
ity predictors examined in the table. For example, at the eight quarter horizon,
forecasts based on the capacity utilization rate had a RMSE 45% less than
the AR(AIC) in the 1970–1983 sample but had a RMSE 52% greater in the
1984–2004 sample.

(iii) The poor performance of the PC forecasts is not simply a consequence of failing
to allow for a time-varying NAIRU or time-varying potential GDP. The PC-�u
and PC- ugap1-sided specifications allow for a slowly time-varying NAIRU (in
the case of PC-�u, by omitting the level of u). In some cases these outperform
the PC-u specification, but in other cases, especially in the post-1984 sample,
they do worse. Whether one allows for a time-varying NAIRU or not, the PC
forecasts are not competitive with either the AR(AIC) or AO forecasts in the
1984–2004 sample.

(iv) The AO forecast substantially improves upon the AR(AIC) and PC forecasts
at the four- and eight-quarter horizons in the 1984–2004 period, but not at
shorter horizons and not in the first period. The shift in relative performance
is dramatic. For example, at the h = 4 horizon (the only horizon reported by
Atkeson and Ohanian 2001), in the first period the MSFE of the AO forecast,
relative to the PC-u forecast, is 1.06/0.88 = 1.21, whereas in the second period
this relative MSFE is 0.89/1.48 = 0.60.

A different way to summarize Table 1 is that inflation has become both easier and
harder to forecast. On the one hand, inflation is easier to forecast in the sense that all
these forecasting models have RMSFEs that are much smaller after 1984 than before.
On the other hand, after 1984 it has been harder to be an inflation forecaster, in the
sense that it is more difficult to improve upon simple univariate models, at least using
activity-based backward-looking Phillips curves.

Evidently, there have been major changes in the univariate inflation process and
in the bivariate process of inflation and its activity-based predictors; however, these
results do not indicate what those changes were or when they occurred.
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2. CHANGES IN THE UNIVARIATE INFLATION PROCESS

The remainder of this paper explores a question raised by Table 1: what, specifically,
have been the changes in the inflation process that led to the apparent changes in the
relative and absolute performance of inflation forecasting models? In this section, we
begin to answer this question by focusing on the univariate inflation process. This
section continues to consider split-sample results with a 1984 break date; timing of
changes is considered in Section 3.

2.1 Split-Sample Summary Statistics

There have been substantial changes in the autocorrelations and spectra of inflation.
Some measures of persistence of the inflation process have changed, while others have
not.

Volatility and autocorrelations. Table 2 presents the standard deviation and first eight
autocorrelations of �π t in both periods for GDP inflation. In the first period the only
autocorrelation that is nonzero at the 10% level is the first (the t-statistic is 1.89); in
the second period, the first autocorrelation is statistically significant at the 5% level,
along with the fourth, perhaps reflecting some seasonality. In both periods, �π t is
negatively serially correlated (except for the positive fourth autocorrelation), with the
first autocorrelation much larger in absolute magnitude (more negative) in the second
period than the first.

Persistence. One measure of persistence is the magnitude of the largest autoregressive
root of the levels process, in this case, the largest autoregressive root of inflation. As
shown in Table 2, by this measure persistence did not change substantially between
the two periods, either in a qualitative or quantitative sense. The confidence intervals

TABLE 2

SUMMARY STATISTICS, GDP INFLATION

1960:I–1983:IV 1984:I–2004:IV

Standard deviation of �π t 1.30 0.91
Autocorrelation of �π t at lag

1 −0.187 (0.102) −0.416 (0.109)
2 −0.148 (0.106) −0.084 (0.127)
3 −0.006 (0.108) −0.117 (0.127)
4 0.150 (0.108) 0.395 (0.129)
5 −0.048 (0.110) −0.268 (0.142)
6 −0.011 (0.110) −0.020 (0.148)
7 −0.062 (0.110) −0.000 (0.148)
8 0.001 (0.110) 0.304 (0.148)

90% confidence interval for the largest AR root of π t 0.884–1.030 0.852–1.032

NOTES: The first row reports the standard deviation of the quarterly change of inflation �π t (at an annual rate). The autocorrelations are
for the indicated sample period, with standard errors in parentheses. Bold entries are significant at the 5% (two-sided) significance level.
The final row reports the 90% confidence interval for the largest autoregressive root of inflation, computed using Stock’s (1991) method of
inverting the augmented Dickey–Fuller (ADF) test statistic (constant, no time trend).
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are remarkably stable across series and time periods, being approximately (0.85,
1.03); both confidence intervals include a unit root. By this measure, the persistence
of inflation has not changed between the two periods. These split-sample confidence
intervals are consistent with the results of the thorough analysis in Pivetta and Reis
(Forthcoming), who report rolling and recursive estimates of the largest autoregressive
root (and the sum of the AR coefficients) that are large and stably near one.

Although the largest AR root appears to be stably large, inflation persistence can
nevertheless be viewed as having fallen: the fraction of the variance of �π t explained
by the persistent shocks and the fraction of the mass of the spectrum of �π t near
frequency zero are both considerably greater in the first period than in the second
(see the working paper version of this paper, Stock and Watson 2006, Appendix
figure A.1).

2.2 The IMA/Trend-Cycle Model

The IMA(1,1) and unobserved components models. The apparent unit root in π t and
the negative first-order autocorrelations, and generally small higher-order autocor-
relations, of �π t suggest that the inflation process might be well described by the
IMA(1,1) process,

�πt = (1 − θB)at , (4)

where θ is positive and at is serially uncorrelated with mean zero and variance σ 2
a .

The IMA(1,1) model is equivalent to an unobserved components (UC) model in
which π t has a stochastic trend τ t and a serially uncorrelated disturbance η t:

πt = τt + ηt , ηt serially uncorrelated
(
0, σ 2

η

)
(5)

τt = τt−1 + εt , εt serially uncorrelated
(
0, σ 2

ε

)
, (6)

where cov(η t, ε j) = 0 for all t and j.

Results. Table 3 presents estimates of the IMA(1,1) parameters, the implied UC pa-
rameters, and statistics testing the IMA(1,1) model against more general ARIMA
models, for the pre- and post-1984 periods. Consistent with the changes in the au-
tocorrelations, the MA parameter is considerably larger in the second period than
in the first; consistent with the decline in the RMSFE of inflation forecasts, the MA
innovation has a smaller variance in the second period than in the first. This is true
for all series.

Blocks (c)–(f) of Table 3 report various statistics assessing the fit and stability of
the IMA(1,1) model. Wald tests of the null that the process is an IMA(1,1), against
the alternative that it is a higher-order process, fail to reject in both cases.

Although the unit root confidence intervals in Table 2 include one, the confidence
intervals include values of the largest AR root that are less than 0.9, so one might ask
for additional evidence on the magnitude of the AR root in the context of a model
with a moving average term. To this end, Table 3 reports ARIMA(1,0,1) models that
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TABLE 3

IMA(1,1) MODEL OF �π t AND ITS UNOBSERVED COMPONENTS REPRESENTATION, GDP PRICE INDEX

1960:I–1983:IV 1984:I–2004:IV

(a) IMA parameters: �π t = (1 – θB)at

θ 0.275 0.656
(0.085) (0.088)

σ a 1.261 0.753
(0.070) (0.070)

(b) UC parameters

σ ε 0.914 0.259
(0.118) (0.072)

σ η 0.662 0.610
(0.110) (0.068)

(c) p-values of Wald tests of IMA(1,1) versus

ARIMA(1,1,1) 0.42 0.98
IMA(1,4) 0.40 0.13

(d) ARIMA(1,0,1) parameters: (1 – φB)π t = (1 – θB)at

φ 0.987 0.989
(.018) (.011)

θ 0.261 0.673
(.102) (.084)

(e) Tests for parameter stability

t-statistic for σ ε, 70−83 = σ ε ,84−04 – −4.75
(p-value) (< 0.001)

t-statistic for σ η ,70−83 = σ η ,84−04 – −0.41
(p-value) (0.684)

QLR: UC model – 31.99
(p-value) (< 0.01)

QLR: AR(4) model – 4.23
(p-value) (0.02)

(f) Variance decomposition of four-quarter inflation forecasts from the UC model

Four-quarter MSE 1.99 0.35
MSE due to:

Filtering error 0.32 0.13
Trend shocks 1.57 0.13
Transitory shocks 0.11 0.09

NOTES: Block (a) reports estimated parameters of the IMA(1,1) model (standard errors in parentheses), block (b) reports the corresponding
parameters of the unobserved components model, block (c) reports tests of the IMA(1,1) specification against ARIMA models with more
parameters, and block (d) reports estimates of ARIMA(1,0,1) models that do not impose a unit root in inflation; in all these blocks, standard
errors are in parentheses. Block (e) reports tests for parameter stability, first one parameter at a time in the UC model with an imposed break
in 1984 (shown as t-statistics), then the Quandt (maximal) likelihood ratio (QLR) statistic (df = 2) over all break dates in the inner 70% of
the sample (the QLR statistic) for the UC model, and finally the (heteroskedasticity-robust) F-statistic version of the QLR statistic for an
AR(4) model for �π (df = 5). The p-values in parentheses in the final block take the 1984 break date as exogenous for the first two rows,
but the QLR critical values allow for an endogenous break (Andrews 1993). Block (f) reports a decomposition of the total four-quarter ahead
forecast error variance (first row), based on the UC model, into the three components of filtering (signal extraction) error, future permanent
disturbances, and future transitory disturbances.

do not impose a unit root in inflation. The point estimates are strikingly close to one,
the smallest being 0.987. Because the distribution theory for the estimator of α is
nonstandard when its true value is close to one, we rely on the confidence intervals
in Table 2 for formal inference about this root.
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Block (e) of Table 3 reports tests of the hypothesis of parameter stability in the
UC model. The hypothesis that the permanent innovation has the same variance in
the two periods is strongly rejected, but the hypothesis that the transitory variance
is the same is not. These tests are Chow tests which treat the 1984 break date as
exogenously specified, which is inappropriate in that a large body of evidence about
changes in the U.S. macroeconomy informed our choice of a 1984 break. To address
this concern, the final two lines report the Quandt likelihood ratio (QLR) statistic
(the likelihood ratio test for a break, maximized over all possible break dates in the
inner 70% of the full sample 1959–2004), first for the IMA(1,1) model then for an
AR(4) model. For the IMA(1,1) model, the QLR test rejects at the 1% significance
level, providing formal evidence of instability in the parameters of the UC model. The
tests on individual parameters suggest that this instability appears in the permanent
innovation variance but not the transitory innovation variance. For the AR(4) model,
the null hypothesis of stability is rejected at the 5%, but not the 1%, significance level;
the smaller p-value for the UC model is consistent with fewer degrees of freedom
because fewer parameters are being tested for stability in the UC model than in the
AR(4) model.

One measure of how important the permanent shocks are is to decompose the
four-quarter ahead forecasts into three sources: errors in estimation of the current
trend, that is, signal extraction (filtering) errors; forecast errors arising from currently
unknown permanent disturbances over the next four quarters; and forecast errors
arising from currently unknown transitory disturbances over the next four quarters.
This decomposition is given in the final block of Table 3. In the first period, future
trend disturbances are by far the largest source of four-quarter forecast errors, followed
by filtering errors. The magnitude of both sources of error falls sharply from the first
period to the second: the forecast error attributed to the trend disturbance falls by over
90%, and the forecast error variance arising from filtering error falls by 60%. Like the
contribution of the trend shock itself, the decline in the contribution of the filtering
error is a consequence of the decline in the volatility of the trend shock because the
trend is less variable and therefore is estimated more precisely by the UC filter. The
contribution of the transitory shocks remains small and is approximately unchanged
between the two periods.

Historical precedents. The IMA(1,1) representation for inflation is not new. As men-
tioned in the introduction, Nelson and Schwert (1977) selected an IMA(1,1) model for
monthly U.S. CPI inflation (identified, in the Box–Jenkins (1970) sense, by inspecting
the autocorrelogram of π t and �π t). Using a sample period of 1953m2–1971m7, they
estimated an MA coefficient of 0.892 (their equation (4)). This monthly IMA(1,1)
model temporally aggregates to the quarterly IMA(1,2) model,2

�πt = (1 − 0.487B − 0.158B2)at . (NS77) (7)

2. Let Pm
t be the monthly log price index. If �ln(Pm

t ) follows the monthly IMA(1,1) �2ln(Pm
t ) = (1 –

θmB)at, then the monthly latent quarterly inflation series follows (1 – B3)2 pQ
t = (1 + B + B2)3(1 – θmB)at,

which, when sampled every third month, corresponds to an IMA(1,2) at the quarterly frequency.
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Schwert (1987) reports IMA(1,1) models for two monthly price indexes (the CPI
and the PPI) and one quarterly index, the GNP deflator. Using data from 1947:I–
1985:IV, Schwert (1987, table 6) estimated the MA coefficient for the GNP deflator
to be 0.665.

A third historical reference is Barsky (1987), who uses Box–Jenkins identification
methods to conclude that quarterly CPI inflation (third month of quarter aggregation)
is well described by an IMA(1,1) model, with an MA coefficient that he estimates to
be 0.46 over the 1960–1979 period (Barsky 1987, table 2).

We return to these historical estimates below.

2.3 Explaining the AO Results

All the univariate models considered so far, including the AO model, produce mul-
tistep forecasts that are linear in π t, π t −1, . . . , so one way to compare these models
is to compare their forecast functions, that is, their weights on π t, π t −1, . . . . Figure 1
plots the forecast functions for four-quarter ahead forecasts computed using the AO
model, an IMA(1,1) model with θ = 0.25, and an IMA(1,1) model with θ = 0.65.
(As discussed in Section 4, θ = 0.25 is approximately the value of θ estimated using

FIG. 1. Implied Forecast Weights on Lagged Quarterly Inflation for Forecasts of Four-Quarter Inflation Computed
Using the Atkeson–Ohanian (2001) Model and Using IMA(1,1) Models with θ = 0.25 and θ = 0.65.
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the 1970–1983 sample for all four inflation series, and θ = 0.65 is approximately
the value estimated using the 1984–2004 sample for all four series.) The AO fore-
cast function weights the most recent four quarters of inflation evenly, whereas the
IMA(1,1) forecast functions are geometrically declining. The AO and θ = 0.25 fore-
cast functions are quite different, and the resulting forecasts typically would be quite
different. In contrast, the AO forecast function closely approximates the θ = 0.65
forecast function, and one might expect the AO and θ = 0.65 forecasts to be similar.

The changing coefficients in the IMA(1,1)/UC representation provide a concise
arithmetic explanation for the performance of the AO forecasts evident in Table 1. Over
the 1970–1983 period, during which the MA coefficient is small, the AO model would
be expected to work poorly. During the later period, during which the MA coefficient
is large, at the four-quarter horizon the AO forecast provides a good approximation
to the IMA(1,1) forecast and would be expected to work well. This approximation
is also good at the eight-quarter horizon, but not at short horizons, so the AO model
would be expected to work well at long but not short horizons in the second period.
This pattern matches that in Table 1.

3. DATING THE CHANGES IN THE INFLATION PROCESS USING

AN UNOBSERVED COMPONENTS—STOCHASTIC VOLATILITY MODEL

The tests for parameter instability reported in Table 3 indicate that there have been
statistically significant and economically large changes in the univariate inflation
process. This section takes a closer look at when those changes occurred and whether
they are associated with continual parameter drift or discrete regime shifts. Is the
IMA model with a single break in 1984 a satisfactory approximation to the inflation
process, or have the changes been more subtle and evolutionary?

The model of this section is a generalization of the unobserved components model
in which the variances of the permanent and transitory disturbances evolve randomly
over time, that is, an unobserved components model with stochastic volatility (UC-
SV). In the UC-SV model, logarithms of the variances of η t and ε t evolve as inde-
pendent random walks. The UC-SV model is,

πt = τt + ηt , where ηt = ση,tζη,t (8)

τt = τt + εt , where εt = σε,tζε,t (9)

ln σ 2
η,t = ln σ 2

η,t−1 + vη,t (10)

ln σ 2
ε,t = ln σ 2

ε,t−1 + vε,t , (11)

where ζ t = (ζη,t, ζε,t) is i.i.d. N(0, I2), ν t = (νη , t, νε , t) is i.i.d. N(0, γ I2), ζ t and ν t are
independently distributed, and γ is a scalar parameter. Note that this model has only
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one parameter, γ , which controls the smoothness of the stochastic volatility process;
γ can either be estimated or chosen a priori.

3.1 Results

Figure 2 plots the smoothed estimates of σ η , t and σ ε , t from the UC-SV model,
computed by Markov Chain Monte Carlo (MCMC) using a vague prior for the initial
condition and γ = 0.2, for GDP inflation, using data from 1953:I–2004:IV (the longer
sample is used here to obtain estimates for the 1950s, and to facilitate comparisons
with the Nelson–Schwert 1977 estimate, which was based on data starting in 1953).

The estimates in Figure 2 show substantial movements over time in the standard
deviation of the permanent component: the 1970s through 1983 was a period of
high volatility, 1953 through the late 1960s or early 1970s and 1984–1990 were
periods of moderate volatility of the permanent innovation, and the 1990s through
2004 have been period of low volatility of the permanent innovation. In contrast,
there is little change in the estimates of the variance of the transitory innovation. The
moving average coefficient of the implied instantaneous IMA(1,1) representation
tracks inversely the smoothed estimates of σ ε , t, being moderate (around 0.4) in the
1950s through late 1960s, small (less than 0.25) during the 1970s through 1983,
higher in the late 1980s, and increasing further in the 1990s to a current estimate of
approximately 0.85.

3.2 A UC-SV Model with Heavy-Tailed Volatility Innovations

The UC-SV model specifies the log variances as following a Gaussian random
walk. This imparts smoothness to the stochastic volatility, relative to a stochastic
volatility process with heavier tails. If a regime shift model is a better description of
the changes in volatility than a model, like the UC-SV model, with smooth parameter
variation, then the UC-SV model (8)–(11) might miss the rapid changes in volatility
associated with a shift in regimes.

To investigate this possibility, we modified the UC-SV so that the disturbances
ζ η , t and ζ ε , t in (8) and (9) were drawn from a mixture of normal distributions,
N(0,0.1I) with probability 0.95 and N(0,0.5I) with probability 0.05; this heavy-tailed
mixture distribution introduces occasional large jumps. As it happens, the smoothed
estimates of ση,t and σε,t from the mixture-of-normals UC-SV model are qualitatively
and quantitatively close to those from the normal-error UC-SV model. Therefore the
mixture-of-normal UC-SV results are not presented and the rest of the paper uses the
UC-SV model with normal errors, (8)–(11).

3.3 Relation to Estimates in the Literature

The series analyzed by Nelson and Schwert (1977), Schwert (1987), and Barsky
(1987) differ from those analyzed here, and the Nelson–Schwert and Schwert esti-
mates for CPI were computed using monthly data. Despite these differences, their es-
timated IMA(1,1) parameters are consistent with Figures 3 and 4. The published esti-
mates of the quarterly MA coefficient are 0.46 for 1960–1979 (Barsky 1987) and 0.665
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(a)

(b)

(c)

FIG. 2. Estimates of the Standard Deviations of the Permanent and Transitory Innovations, and of the Implied IMA(1,1)
Coefficient, Using the UC-SV(0.2) Model: 16.5%, 50%, and 83.5% Quantiles of the Posterior Distributions, GDP Deflator,
1953–2004. (a) Standard Deviation of Permanent Innovation, σ ε , t . (b) Standard Deviation of Transitory Innovation, σ η,t

and (c) Implied IMA(1,1) Coefficient θ .
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for 1949–1985 (Schwert 1987). Comparing these published estimates to averages in
Figure 2(c) over the corresponding time period indicates general agreement between
the previously published estimates and the instantaneous MA coefficient estimated
in Figure 2(c) (the high estimate in Schwert 1987 seems to be driven in part by the
pre-1953 data).

4. PSEUDO OUT-OF-SAMPLE UNIVARIATE FORECASTS

This section examines whether unobserved components and moving average
model with time-varying parameters could have produced useful real-time univariate
forecasts.

4.1 Forecasting Models

The comparison considers two models studied in Table 1, the recursive AR(AIC)
benchmark and the AO model, plus additional rolling and recursive models. The
multistep AR forecasts in Table 1 were computed using the direct method; this section
also presents iterated multistep AR forecasts. The iterated AR forecasts are computed
by estimating a one-period ahead autoregression, then iterating to obtain the desired
h-step ahead forecast.

Recursive IMA(1,1), AR(4) , and iterated AR(AIC). The models are estimated using
an expanding sample starting in 1960.

Rolling AR(AIC), IMA(1,1), AR(4), and iterated AR(AIC). The models are estimated
using a data window of 40 quarters, concluding in the quarter of the forecast.

Nelson–Schwert (1977) (NS77). The NS77 model is the quarterly IMA(1,2) model (7)
implied by temporal aggregation of Nelson and Schwert’s (1977) monthly IMA(1,1)
model.

UC-SV, γ = 0.2. Forecasts are computed using the UC-SV model with γ = 0.2. The
UC-SV model is applied to data from 1960 through the forecast quarter to obtain
filtered estimates of the trend component of inflation, which is the forecast of future
values of inflation (π t+h/t = τ t/t).

Fixed coefficient IMA(1,1). These are IMA(1,1) models with coefficients of 0.25 and
0.65. The coefficient of 0.25 approximately corresponds to the value in Table 2 for
the period 1970–1983, and the coefficient of 0.65 approximately corresponds to the
value for 1984–2004. As in Table 1, multiperiod forecasts based on the IMA(1,1) and
UC models are computed using the iterated method.

The recursive and rolling models produce pseudo out-of-sample forecasts. The
NS77 model produces a true out of sample forecast because its coefficients were
estimated using data through 1971. The UC-SV model with γ = 0.2 and the fixed-
coefficient IMA(1,1) models serve to illustrate the change in the inflation process;
these models are not pseudo out-of-sample models because their parameters (γ in the
first instance, θ and σa in the second) were estimated (or, in the case of γ , calibrated)
using the full data set, so in particular their parameters were not estimated by recursive
or rolling methods.
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FIG. 3. Smoothed Relative Mean Squared Forecast Errors of Various Forecasts, Relative to the Recursive AR(AIC)
Benchmark: GDP Deflator.

4.2 Results

Table 4 summarizes the forecasting performance of the various models over the
1970–1983 and 1984–2004 periods for GDP inflation (entries are MSFEs, relative to
the recursive AR(AIC), which is also the benchmark in Table 1). Figure 3 provides
additional detail about the forecasting performance at different points in time by pre-
senting a two-sided smoothed estimate of the relative MSFE (relative to the recursive
AR(AIC) forecast), with exponential smoothing and a discount factor of 0.95 (end
points are handled by simple truncation). Inspection of Table 4 and Figure 3 suggests
five findings.

First, among the fixed-parameter models, the θ = 0.25 model performs well in
the first period, whereas the θ = 0.65 model performs well in the second. This is
consistent with the choice of these two parameter values as being approximately the
MLEs of θ in the two periods. The UC-SV(0.2) model evidently adapts well to the
shifting parameter values and produces forecasts that rival those of the θ = 0.25
model in the first period and those of the θ = 0.65 model in the second. In this sense,
among UC (IMA(1,1)) models, the UC-SV(0.2) model can be thought of as providing
an approximate bound on the forecasting performance of the pseudo out-of-sample
forecasts.
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Second, among the pseudo out-of-sample forecasts, the rolling IMA(1,1) forecast
performs very well—nearly as well as the UC-SV model—in both periods. Closer
inspection of the forecast errors indicates that the primary source of the improvement
of the AO model over the rolling IMA(1,1) model during the second period occurs
during the late 1980s, a period of sharp change in the MA coefficient during which
the rolling forecast took time to adapt.

Third, the AR models do not forecast as well as the rolling IMA and UC-SV mod-
els. Eliminating the AIC lag selection by using an AR(4) improves performance in
some but not all sample/horizon combinations; this is also true if AIC lag selection
is replaced by BIC (unreported results). Generally speaking, the direct and iterated
AR(AIC) forecasts have quantitatively similar performance (the RMSFE of the it-
erated forecast, relative to the direct AR(AIC) recursive forecast, ranges from 0.94
to 1.07), and no clear pattern emerges concerning when one method or the other is
preferred.

Fourth, the NS77 forecast is truly an out-of-sample forecast, and its performance
is in the post-1984 sample at all horizons is remarkably good.

Fifth, although the differences in the forecasting performance between these models
are large in an economic and practical sense, this conclusion should be tempered
by recognizing that there is a great deal of sampling uncertainty. Table 4 reports
standard errors, computed by parametric bootstrap using the estimated time-varying
UC model (parameterized by the median estimates of the time-varying variances), as
the data generating process. As emphasized by Clark and McCracken (2006), there
is considerable sampling variability in the relative MSFEs, which are often within
one standard deviation of 1.00 (note, however, that the relative MSFEs for nested
models do not have a normal distribution). Given these large standard errors, we
suggest the following interpretation. The in-sample analysis of Section 3 provides
strong evidence, which includes formal hypothesis tests, that there has been time
variation in the inflation process and that this time variation is well described by the
UC model with time-varying variances. That analysis suggests that a rolling IMA(1,1)
model will improve upon other univariate linear forecasting models. As measured by
the relative MSFEs in Table 4, this prediction is borne out, and the improvement is
economically large but imprecisely estimated.

4.3 Results for Other Price Indexes

Table 5 summarizes results for three other price indexes (PCE-core, PCE-all, and
CPI). For PCE-core and PCE-all, in virtually all regards the results are quantitatively
and qualitatively similar to those in Tables 3 and 4, so none of the main findings
discussed so far hinge on using GDP inflation instead of either of these other price
indexes. All the 90% confidence intervals for the largest AR root include one, both
PCE series are well modeled using the TVP-UC model, and the QLR statistic rejects
parameter stability in the UC model. The forecasts from the rolling IMA(1,1) are
in most cases the best or nearly the best among the forecasts considered; the main
exception to this is that the AO model outforecasts the rolling IMA(1,1) model in the
second period, due mainly to the slow adaptation of the rolling IMA(1,1) to the rapidly
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changing parameters in the mid-1980s. The main difference between the results for
the CPI and for the other inflation series is that the quarterly CPI does not seem to be
well modeled as an IMA(1,1) (the IMA(1,1) model is rejected against the IMA(1,4)
alternative in both samples). One issue with interpreting the results for the CPI,
especially model stability results, is that the construction of the CPI is not consistent
over time, in particular the treatment of housing has changed. Perhaps more important,
however, are issues of temporal aggregation. The measurement procedure for the GDP
price index, the PCE price index, and the CPI are all different and paying attention to
the measurement details could yield a different method of temporal aggregation than
the stylized model used in footnote 2. The fact that the temporally aggregated NS77
forecasts (see equation (7)) are excellent for the CPI is consistent with the monthly
(but not quarterly) CPI following an IMA(1,1), and suggest that closer attention to
temporal aggregation issues, especially for the CPI, is warranted.

Additional results for PCE-core, PCE-all, and CPI inflation are presented in the
working paper version of this paper (Stock and Watson 2006). The breakdown of the
ADL PC forecasts seen in Table 1 is also observed using these other inflation measures.
PCE-core and PCE-all inflation are well described by an IMA(1,1) model with time-
varying coefficients: for both indexes, the first (and only the first) autocorrelation of
inflation is statistically significantly different from zero, and a nonparametric estimate
of the spectrum of �π t approximately has the shape implied by an MA(1) model. The
autocorrelations of CPI inflation suggest that a different model, perhaps an IMA(1,2),
is more appropriate, which (as discussed above) could be a consequence of temporal
aggregation. Still, the time paths of the standard deviations of the UC-SV model for
all three indexes, including CPI inflation, are qualitatively similar to those for GDP
inflation. In addition, the rolling IMA(1,1) model forecasts well for all these series,
including the CPI, at all horizons in both sample periods. The NS77 MA(2) forecasts
remarkably well in the second sample period: of sixteen possible cases (four horizons
and four series), in the second sample period the NS77 model produces the best
forecasts in 11 cases.

4.4 Reconciling the AR and MA Results

Long-order autoregressions provide arbitrarily good approximations to invertible
moving average processes in population, so any explanation of the difference between
the rolling AR and rolling MA forecasts must appeal to finite-sample differences
between the two estimated models. There are three such differences that are relevant
and that can reconcile the AR and the MA results. First, in the second sample, θ

is larger which implies that more distant autoregressive coefficients will be larger
in absolute value, increasing the truncation bias of a finite-lag AR. Second, for this
reason, the AIC will tend to call for longer AR lags, however, this introduces greater
estimation variance in the AR. Third, the implied population AR coefficients are
larger in absolute value when θ is larger, and the larger population AR coefficient
means that its estimator will have a larger bias towards zero. Each of these three
finite-sample effects works toward making the AR model a worse approximation in
the second sample than in the first.
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4.5 Summary

The results in Sections 2–4 provide a simple picture of the evolution of the inflation
process. The variability of the stochastic trend in inflation increased in magnitude
during the 1970s through 1983, then fell significantly, both in statistical and economic
terms. Although the stochastic trend component of inflation diminished in importance,
it remains nonzero (said differently, confidence intervals for the largest AR root
continue to include one). Moreover, because the variance of the permanent (but not
transitory) component fell dramatically, the variance of �π t has fallen. Because
the smaller permanent component variance corresponds to a larger MA coefficient,
the declining importance of the stochastic trend in inflation explains both the good
performance of the AO forecast in the second sample at long horizons, and its poor
performance at short horizons and in the first sample. An important piece of evidence
supporting this interpretation is that the rolling IMA(1,1) model produces forecasts
that have the lowest MSFE, or nearly so, at all horizons for all four inflation series
among the recursive and rolling univariate models, including the AO model.

The declining importance of the permanent component (equivalently, the increase
in the MA coefficient) implies that an AR approximation needs more lags and larger
coefficients, two features that work toward increased sampling variability and greater
finite-sample bias of AR forecasts. This is consistent with the better performance of
the rolling MA forecasts, compared to the rolling AR forecasts, since the mid-1980s.

5. IMPLICATIONS FOR MULTIVARIATE FORECASTS

The foregoing univariate analysis has three implications for the specification of
conventional ADL Phillips curves of the form (3):

(i) The coefficients on lags of �π t will, to a first approximation, decline expo-
nentially as would be implied by inverting an MA(1) (this implication holds
exactly if lagged xt is uncorrelated with lagged �π t). The restricted one-step
ahead specification has a rational lag specification for these coefficients:

�πt = µ + βxt−1 + δ(B)�xt−1 + α(B)�πt−1 + ut , where

α(B) = −ψ(1 − ψB)−1. (12)

If the coefficients β and δ(B) are zero, the rational lag parameter ψ equals the
MA parameter θ .

(ii) There will be instability in the coefficients on lags of �π t over the sample, with
the coefficients being larger in absolute value since the mid-1980s than during
the 1970s and early 1980s.

(iii) Failure to allow for time variation in the coefficients on lagged �π t could lead
to an apparent shift in the coefficients on xt; in principle the Phillips relation
could be stable once one allows for changes in the coefficients on lagged �π t.
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This section examines these three implications. The analysis is in sample (not
forecasting) and focuses on specifications with the unemployment gap and the output
gap, where both one- and two-sided gaps are considered. The two-sided gap form
is useful for historical analysis and assessing coefficient stability. The one-sided gap
form is useful for assessing predictive content.

Table 6 reports estimates of the one-step ahead model using the unrestricted
ADL(4,4) specification (3) (first two columns) and the restricted specification (12)

TABLE 6

ADL AND RESTRICTED ADL MODELS OF GDP INFLATION:

�π t = µ + βxt −1 + δ(B)�xt −1 +α(B)�π t −1 + ut

a. xt = ugap1-sided

α(B) unrestricted, 4 lags, OLS α(B) = –ψ(1 – ψL) −1, NLLS

1960:I–1983:IV 1984:I–2004:IV 1960:I–1983:IV 1984:I–2004:IV

(i) Coefficients (standard errors)
x t−1 −0.367 (0.258) −0.100 (0.148) −0.330 (0.262) −0.143 (0.087)
�π t−1 −0.309 (0.128) −0.666 (0.123) −0.366 −0.665
�π t−2 −0.234 (0.113) −0.503 (0.121) −0.134 −0.442
�π t−3 −0.144 (0.132) −0.339 (0.124) −0.049 −0.294
�π t−4 0.017 (0.102) 0.116 (0.104) −0.018 −0.200
ψ – – 0.366 (0.111) 0.665 (0.082)
SER 1.222 0.730 1.219 0.758
R2

x |lags of �π 0.103 0.038 0.111 0.029
Granger causality 3.45 (0.01) 1.23 (0.29) 3.72 (<0.01) 1.01 (0.40)

F-test (p-value)
(ii) Chow test for a break in coefficients on (p-value)

xt−1 0.37 0.54
�xt−1 0.48 0.78
�π t−1 0.16 0.03
All coefficients 0.10 0.05

b. xt = ugap2-side

α(B) unrestricted, 4 lags, OLS α(B) = –ψ(1 – ψL) −1, NLLS

1960:I–1983:IV 1984:I–2004:IV 1960:I–1983:IV 1984:I–2004:IV

(i) Coefficients (standard errors)
xt−1 −0.406 (.151) −0.183 (0.092) −0.438 (0.157) −0.288 (0.119)
�π t−1 −0.366 (0.128) −0.742 (0.110) −0.467 −0.717
�π t−2 −0.290 (0.111) −0.558 (0.119) −0.218 −0.514
�π t−3 −0.180 (0.117) −0.366 (0.128) −0.102 −0.369
�π t−4 0.041 (0.098) 0.070 (0.106) −0.048 −0.264
ψ 0.467 (0.106) 0.717 (0.075)
SER 1.185 0.679 1.188 0.701
R2

x |lags of �π 0.152 0.118 0.152 0.125
Granger causality 3.67 (<0.01) 4.88 (<0.01) 3.31 (0.01) 5.34 (<0.01)

F-test (p-value)
(ii) Chow test for a break in coefficients on (p-value)

xt−1 0.21 0.44
�xt−1 0.27 0.57
�π t−1 0.18 0.05
All coefficients 0.04 0.02

Continued
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TABLE 6

(Continued)

c. xt = ygap1-sided

α(B) unrestricted, 4 lags, OLS α(B) = –ψ(1 – ψL) −1, NLLS

1960:I–1983:IV 1984:I–2004:IV 1960:I–1983:IV 1984:I–2004:IV

(i) Coefficients (standard errors)
xt−1 0.186 (0.087) 0.109 (0.076) 0.174 (0.088) 0.136 (0.081)
�π t−1 −0.297 (0.123) −0.634 (0.123) −0.368 −0.659
�π t−2 −0.254 (0.111) −0.474 (0.128) −0.135 −0.434
�π t−3 −0.114 (0.133) −0.329 (0.131) −0.050 −0.286
�π t−4 0.054 (0.108) 0.124 (0.110) −0.018 −0.189
ψ 0.368 (0.110) 0.659 (0.0978)
SER 1.253 0.723 1.256 0.754
R2

x |lags of �π 0.061 0.050 0.059 0.037
Granger causality 1.40 (0.23) 1.36 (0.24) 1.36 (0.25) 1.12 (0.35)

F-test (p-value)
(ii) Chow test for a break in coefficients on (p-value)

xt−1 0.51 0.75
�xt−1 0.48 0.79
�π t−1 0.24 0.05
All coefficients 0.09 0.06

d. xt = ygap2-sided

α(B) unrestricted, 4 lags, OLS α(B) = –ψ(1 – ψL) −1, NLLS

1960:I–1983:IV 1984:I–2004:IV 1960:I–1983:IV 1984:I–2004:IV

(i) Coefficients (standard errors)
xt−1 0.159 (0.059) 0.068 (0.052) 0.149 (0.060) 0.106 (0.062)
�π t−1 −0.326 (0.123) −0.649 (0.120) −0.427 −0.693
�π t−2 −0.308 (0.113) −0.517 (0.124) −0.182 −0.480
�π t−3 −0.155 (0.135) −0.355 (0.126) −0.078 −0.333
�π t−4 0.009 (0.109) 0.092 (0.109) −0.033 −0.231
ψ 0.427 (0.108) 0.693 (0.088)
SER 1.233 0.714 1.240 0.739
R2

x |lags of �π 0.088 0.064 0.082 0.063
Granger causality 2.23 (0.06) 2.07 (0.08) 2.20 (0.07) 1.85 (0.12)

F-test (p-value)
(ii) Chow test for a break in coefficients on (p-value)

xt−1 0.25 0.62
�xt−1 0.51 0.83
�π t−1 0.23 0.06
All coefficients 0.09 0.11

NOTES: Entries in block (i) are the coefficients in the autoregressive distributed Phillips curve given in the table header, for the sample period
given in the column header, for the unrestricted model (first two columns) and the restricted model (final two columns), where the restricted
model imposes the MA(1) (rational lag) functional form on the parameters, see (12). Italicized entries are the lag coefficients implied by
estimated value of ψ reported for the restricted specification. Standard errors are in parentheses. SER is the standard error of the regression
and R2

x |lags of �π
is the regression partial R2 for xt −1, �xt −1, and lags of �xt −1. The Granger causality statistic tests the joint significance

of the coefficients on xt −1, �xt −1, and lags of �xt −1. Block (ii) reports p-values for heteroskedasticity-robust Chow tests of a break in
the indicated coefficient or set of coefficients, with a break date of 1984:I. The activity variable xt analyzed in each part of the table (a–d) is
given in the part header.

(final two columns), where the activity variable xt is the unemployment gap (one-
and two-sided, parts a and b) and the output gap (one- and two-sided, parts c and d).
Table 6 suggests five conclusions.
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First, the coefficients on lags of �π t in the unrestricted model are qualitatively and
quantitatively consistent with the exponential decline in the restricted model. These
results support implication 1 above. Other researchers have stressed the importance
of using long restricted specifications for the lags on �π t in Phillips curves. Gordon’s
(1998 and earlier) specifications use lagged annual inflation rates, in effect imposing
a step function specification on the lag shape for quarterly inflation. Brayton, Roberts,
and Williams (1999) find that polynomial distributed lag specifications with long lags
(up to 25 quarters) fit better than models with shorter unrestricted lags. The results in
Table 6 support the use of restricted, long-lag specifications. However, the functional
form in Table 6 differs from these other authors, in that it is a rational lag specification,
not a step function or a polynomial distributed lag.

Second, consistent with implication 2 above, the coefficients on lags of �π t in-
crease in absolute value from the pre-1984 to the post-1984 samples. As in the
IMA(1,1) model, the rational lag parameter ψ increases from the first to the sec-
ond sample, indeed, the estimated parameter ψ in the multivariate model is quan-
titatively close to the estimated MA parameter θ in each sample, for both activity
gaps.

Third, in the restricted rational distributed lag model, the Chow test for a break
in 1984 in the coefficients on lags of �π t rejects at the 5% level in three of the
four specifications (and in all four at the 10% level). However, in the unrestricted
ADL model, the same Chow test does not reject at the 10% level in any of the
four specifications. The greater degrees of freedom of the Chow test in the unre-
stricted specification evidently reduces power by enough to mask the changes in those
coefficients.

Fourth, the evidence on implication 3—whether the Phillips curve is stable after
allowing for changes in the coefficients on lagged �π t—is mixed. There is some
evidence that imposing the rational lag specification with a changing parameter ψ

leads to a more stable coefficient on the activity gap xt. For example, in the one-sided
unemployment gap specification, the coefficient on xt fell by 73% in absolute value
between the two samples in the unrestricted specification (from –0.367 to –0.100),
but only fell by 56% in the restricted specification. Although these changes are large
in an economic sense, they are imprecisely estimated, and the hypothesis that the
coefficient on xt −1 is constant across the two samples is not rejected in any of the
eight cases considered in Table 6.

Fifth, the marginal explanatory content of the activity variables dropped substan-
tially from the first to the second sample, both in the unrestricted and restricted
specifications. Neither one-sided gap variable produces a significant Granger causal-
ity test statistic in the second sample, and the partial R2 of the one-sided gap variables
is quite small in the second period, less than 0.04 for both restricted specifications.
Although these results are in-sample, consider only two gap variables, and are only
for a one-step ahead specification, they suggest that it could be challenging to use
the time variation found in the univariate analysis to develop useful activity-based
forecasts.
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FIG. 4. Time-Series Plot (upper) and Scatterplot (lower) of the Residual from the UC-SV Model of GDP Inflation and
the Two-Sided Unemployment Gap.

NOTES: Time-series plot: UC-SV residual (solid line); ugap2-sided (dash-dots). Scatterplot: open circles, 1970–1983; filled
circles, 1984–2004.
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Additional evidence of some stability in the relationship between four-quarter GDP
inflation and gap measures is presented in Figure 4, which plots the four-quarter
ahead prediction error from the UC-SV model (γ = 0.2) and the two-sided unem-
ployment gap. The slope of this bivariate regression is less in the second period than
in the first, and the R̄2 falls by roughly one-half between the two periods. Still, for
GDP inflation, the slope is statistically significant (and negative for the unemploy-
ment gap, positive for the output gap) in both periods. Also, in results not tabulated
here, the implied coherence between the activity variables and changes of inflation
at business cycle frequencies is large and relative stable across periods, typically
being in the range 0.5–0.6. This stable coherence is consistent with the positive
and stable association found at business cycle frequencies by Harvey, Trimbur, and
van Dijk (2005, figures 16 and 17), who used a bivariate unobserved components
(trend-cycle) model with different, but possibly correlated, real and nominal cyclical
components.

6. DISCUSSION

This paper has explored some implications of the changing univariate inflation
process for multivariate activity-based inflation forecasting, but more work remains.
These results present the hope that, with suitable modification using a rational lag
specification like (12), the outlook for forecasting using backward-looking Phillips
curves might be less gloomy than the results in AO and in Section 1 would lead one
to believe. This said, it is not straightforward to turn the increased stability in two-
sided gap models into reliable one-sided gap forecasting specifications. Still, there
is some evidence that real-time forecasts have provided improvements upon the best
univariate models. Kohn (2005) reports large reductions in true (not pseudo) mean
squared errors of real-time Fed staff forecasts of quarterly CPI inflation, relative to the
AO model, over 1984–2000, and Ang, Bekaert, and Wei (2005) find that true out-of-
sample survey forecasts (median Michigan or Livingston forecasts) outperform a large
number of pseudo out-of-sample univariate and multivariate time-series competitors.
Both the Board staff forecast and the survey forecasts are combination forecasts,
pooled over judgmental and model-based forecasts, and both presumably incorporate
considerably more information than are present in the simple activity-based forecasts
examined here. Further attempts to develop competitive time-series forecasts might
profit from pursuing systematically those features that have proven successful in these
survey forecasts.
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