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Assessing the Feasibility of Satellite-Based Thresholds
for Hydrologically Driven Landsliding
, Brian D. Collins?

Matthew A. Thomas" , and Benjamin B. Mirus"

lus. Geological Survey Geologic Hazards Science Center, Golden, CO, USA, 2Us. Geological Survey Geology, Minerals,
Energy, and Geophysics Science Center, Menlo Park, CA, USA

Abstract Elevated soil moisture and heavy precipitation contribute to landslides worldwide. These
environmental variables are now being resolved with satellites at spatiotemporal scales that could offer
new perspectives on the development of landslide warning systems. However, the application of these data
to hydrometeorological thresholds (which account for antecedent soil moisture and rainfall) first needs to be
evaluated with respect to proven, direct measurement-based thresholds that use rain gages and in situ soil
moisture sensors. Here we compare ground-based hydrologic data to overlapping satellite-based data before,
during, and after a recent season of widespread shallow landsliding in the San Francisco Bay Area
(California, USA). We then explore how the remotely sensed information could be used to empirically define
hypothetical thresholds for shallow landsliding. We find that the ground-based thresholds developed with a
single monitoring station show superior performance because the in situ soil saturation data better reflect
the gravity-dominated subsurface flow conditions that are characteristic of hillslopes during the rainy
season. Although the satellite-based thresholds can identify most of the landslide days, they include a greater
number of false alarms due to overestimates of soil moisture between major storm events. To avoid the type
of false alarms that are characteristic of our satellite-based thresholds, further postprocessing of the near-
surface hydrologic response data should be integrated into satellite-based model outputs to better reflect
gravity-dominated drainage. Our results encourage further deployment of ground stations in landslide-
prone terrain and cautious exploration of satellite-based hydrometeorological thresholds where in situ
networks are nonexistent.

Plain Language Summary Soil wetness and rainfall contribute to landslides across the world.
Using soil moisture sensors and rain gages, these environmental conditions have been monitored at
numerous points across the Earth's surface to define threshold conditions, above which landsliding should
be expected for a localized area. Satellite-based technologies also deliver estimates of soil wetness and
rainfall, potentially offering an approach to develop thresholds as part of landslide warning systems over
larger spatial scales. To evaluate the potential for using satellite-based measurements for landslide warning,
we compare the accuracy of landslide thresholds defined with ground- versus satellite-based soil wetness
and rainfall information. We find that the satellite-based data overpredict soil wetness during the time of
year when landslides are most likely to occur, resulting in thresholds that also overpredict the potential for
landslides relative to thresholds informed by direct measurements on the ground. Our results encourage the
installation of more ground-based monitoring stations in landslide-prone settings and the cautious use of
satellite-based data when more direct measurements are not available.

1. Introduction

The potential for satellite-based rainfall data to inform global landslide hazard assessment has been recog-
nized for more than a decade (Hong et al., 2006). Despite the multitude of studies focused on comparisons
of ground- and satellite-based rainfall for locations throughout the world, few have evaluated criteria impor-
tant to landslide initiation potential (e.g., Brunetti et al., 2018; Kirschbaum et al., 2009, 2012; Rossi et al.,
2017). This is owed, in part, to the relatively coarse resolution of satellite-based rainfall products. More recent
satellite-based rainfall missions, including the National Aeronautics and Space Administration (NASA)
Global Precipitation Measurement (GPM), now provide rainfall information at higher spatiotemporal reso-
lutions (~9-km grid cell size, 30-min time steps; 6-hr minimum latency) that are increasingly relevant for
landslide science (Hou et al., 2014; Kirschbaum et al., 2017). These advancements facilitated the first
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operational system for satellite-based assessment of rainfall-triggered landslides across the globe
(Kirschbaum & Stanley, 2018), which relies on a 7-day antecedent rainfall index, updated every 3 hr, to eval-
uate hazard potential.

Whereas the incorporation of satellite-based rainfall into hazard assessment tools shows promise, rainfall is
an indirect proxy for the subsurface hydrologic state variables (i.e., soil moisture and pore-water pressure)
that cause slope failure (Terzhagi, 1943). The hydrometeorological framework for identifying thresholds
for landslide initiation, which favors the incorporation of the hydrologic processes that cause and trigger
slope failure (e.g., Bogaard & Greco, 2018), has been shown to improve tools that are traditionally developed
with only rainfall-based criteria (e.g., Mirus, Becker, et al., 2018; Segoni et al., 2018). However, when we
extend our view of thresholds to include those that also account for subsurface hydrology, the potential
for data availability issues grows considerably. Despite the relatively coarse spatial resolution of satellite-
based soil moisture data products, studies have demonstrated their potential to add value to site- (Brocca
et al., 2012; Ray et al., 2010; Ray & Jacobs, 2007) and regional-scale (Brocca et al., 2016) landslide studies.
Newer data sources, such as the NASA Soil Moisture Active Passive (SMAP) mission, now deliver estimates
of soil moisture at spatiotemporal scales (~9-km grid cell size, 3-hr time steps, up to 1-m depth using remote
sensing data and a land surface model; 3-day minimum latency; Reichle, De Lannoy, Liu, Ardizzone, et al.,
2017,Reichle, De Lannoy, Liu, Koster, et al., 2017) that are meaningful for hazard science. These data have
already proven useful for improving predictions of flooding (Crow et al., 2017, 2018) and evaluating regional
patterns in landslide concentration (Bessette-Kirton et al., 2019).

Satellite-based rainfall and soil moisture products need to be evaluated carefully in settings where landslides
actually occur to test their potential suitability for applications in warning systems. Furthermore, given the
disparity between the availability of ground-based rainfall versus soil moisture information, it is paramount
to understand the trade-offs between developing spatially variable hydrometeorological thresholds with
accurate (but less widespread) ground-based data versus globally comprehensive (but likely less accurate)
satellite-based information. In our study, we explore (1) how satellite-based rainfall and soil saturation esti-
mates compare to in situ measurements at spatiotemporal scales relevant to landslide forecasting and (2)
how that information might be used to inform spatially variable hydrometeorological thresholds. The study
area where we apply these questions is the ~1,000-km? East Bay Hills of the San Francisco (SF) Bay Area in
California (USA; Figures 1a and 1b), which is an extensively studied landslide-prone region (e.g., Cannon &
Ellen, 1985; Coe & Godt, 2001; Collins et al., 2012; Keefer et al., 1987; Nilsen & Turner, 1975; Pike &
Sobieszczyk, 2008; Taylor & Brabb, 1972; Wieczorek et al., 1988; Wilson & Jayko, 1997) that hosts overlap-
ping ground- and satellite-based rainfall and soil moisture data coverage for areas of recent,
widespread landsliding.

2. Study Region

The East Bay Hills comprise a diverse assemblage of lithologies, including metamorphic, sedimentary, and
volcanic rocks that record the area's transition from a deep-marine subduction margin to shallow-marine
and terrestrial environments associated with the evolution of the San Andreas fault system. Local compo-
nents of compression within a network of active transform faults are uplifting the region (Sloan, 2006).
Whereas total relief in the region is low (667 m), the predominantly grass- and shrub-dominated landscape
(Figure 1c) exhibits steep topography (mean = 17° + 10° excluding ~20% of the land surface that is charac-
terized by low-lying alluvial deposits, reservoirs, and other areas <1°; U.S. Geological Survey [USGS] 2018).
This terrain is characteristic of landslide-prone settings and includes many areas with slopes that are >20°,
which account for ~30% of the study region. A Mediterranean climate delivers ~90% of the rainfall between 1
November and 30 April, with the most powerful rainstorms typically arriving in January and February
(PRISM 2018).

The SF Bay Area is subject to high levels of landslide hazard and risk (Crovelli & Coe, 2009). Major region-
impacting storm events occur on the decadal time scale (e.g., Ellen & Wieczorek, 1988; Godt, 1999), and indi-
vidual storms are capable of destroying homes in any given year (e.g., Collins & Corbett 2019). During a
sequence of rainstorms in January and February 2017, approximately 9,000 landslides initiated in the East
Bay Hills region (Collins et al., 2018). Most of the slope failures were shallow translational slides (Casadei
et al., 2003), but many transitioned into debris flows. Based on mapping of high-resolution satellite
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Figure 1. (a) Location of the East Bay Hills (EBH) region of the San Francisco (SF) Bay Area in California, USA. Yellow
and purple polygons respectively refer to the 10 focus catchments with high and low mean annual precipitation (MAP;
reported in millimeters). Coordinates in degrees and meters correspond to the WGS84 and NAD83 UTM (Zone 10) pro-
jections, respectively. (b) Topographic hillshade (USGS 2018) for the 10 focus catchments with an overlay of MAP at 800-m
horizontal resolution (PRISM 2018). Location of the BALT1 monitoring site shown with white circle. Catchment names
coincide with abbreviations listed in Table 1. (c) Southeast looking view of the EBH from BALT1.

imagery, the overall landslide concentration for the East Bay Hills region was ~8.5 landslides/km?.
Landslides occurred in all of the focus catchments of our study area (Figure 1b) with catchments on the
west side (BK and LC) of the topographic high of the hills (running northwest to southeast along
catchments SP, SL, DC, and PR) having a lower total number of landslides (i.e., tens of landslides in BK
and LC versus hundreds of landslides in each of the other regions), likely as a result of the built-up
development on the more urbanized (SF Bay) side of the topographic divide. Landslides generally
occurred on slopes ranging from 15° to 35° and throughout all directional aspects. Although many of
these landslides occurred in undeveloped open spaces, ~15% affected structures and infrastructure,
including homes and roads. Unlike other widespread landsliding events in the SF Bay Area that occurred
during El Nifio events, the 2016-2017 landsliding occurred during a weak La Nifia year with above-
average rainfall exceeding one standard deviation of the mean.

Elevated soil moisture and positive pore-water pressure development are recognized as key factors for the
initiation of shallow landslides in the SF Bay Area (Keefer et al., 1987), where failure surfaces are often at
(or near) the soil-weathered bedrock interface (Coe & Godt, 2001). Water Year (WY; defined as beginning
1 October and ending 30 September) 2016-2017 is an important benchmark for landslide warning and
threshold research in the East Bay Hills (e.g., Cannon, 1988; Cannon & Ellen, 1985; Keefer et al., 1987;
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Figure 2. Thiessen polygons intersected with the 10 focus catchments for the (a) ground-based rainfall, (b) satellite-based
rainfall, and (c) satellite-based soil moisture data sets. In (a), each ground-based polygon center corresponds to a rain gage.
In (b) and (c), the satellite-based polygons appear grid-like because the underlying data product is distributed in a quasi-
rectangular geographic projection.

Thomas, Mirus, & Collins, 2018; Thomas, Mirus, Collins, Lu, et al., 2018; Wilson, 2004; Wilson & Jayko,
1997; Wilson et al., 1993) because a monitoring station (Collins et al., 2012) recorded subsurface soil
saturation and pore-water pressure dynamics before, during, and after a season of
widespread shallow landsliding.

3. Methods
3.1. Ground- and Satellite-Based Data Sets

We compiled ground-based rainfall information for WY 2016-2017 across 10 focus catchments (Figure 1b)
from the Alameda County Public Works Agency (F. Codd, personal communication, May 2018), Alameda
County Water District (J. Gekov, personal communication, May 2018), California Data Exchange Center
(2018), and Weather Underground Personal Weather Station Network (Wunderground, 2018).
Wunderground is a commercial weather service that hosts a network of personal weather stations that
undergo quality control processes, including checks for the data falling outside a normal range, changing
at an abnormal rate, and whether or not the observations agree with nearby stations. The hourly (or less)
tipping-bucket rain gages that we used are all within 5 km of the East Bay Hills and provide data for at least
90% of the WY, 95% of the rainy season (i.e., November through April), and 100% of four probable multiday
landslide periods that occurred in January and February 2017. The data set contains 96 rain gage records
(Table S1) with an average map-view spacing of 2.25 km (Figure 2a).

Ground-based volumetric soil-water content data were collected by a shallow landslide monitoring station
(termed “BALT1”) that is operated by the USGS (Collins et al., 2012) and is located within the San
Leandro (SL) catchment (Figure 1b). The unchanneled topographic hollow (e.g., Sidle et al., 2018) where
the instrumentation is sited is characteristic of many that experience shallow landslides during winter rain-
storms. Two vertical arrays record subsurface volumetric soil-water content (25- and 70-cm depth; 30- and
140-cm depth) at 10-min intervals. A tipping-bucket rain gage is also installed at the site. We calculated
the average soil moisture for each array and then used the two resultant time series to calculate an overall
average. We converted the volumetric soil-water content time series to soil saturation based on observed por-
osity values for the two sensor arrays (i.e., 0.43 and 0.34; Thomas et al., 2017).

We acquired WY 2016-2017 satellite-based rainfall and volumetric soil-water content data from the NASA
GPM-based IMERG (Integrated Multi-Satellite Retrievals; Huffman et al., 2018) and SMAP L4_SM
(Reichle, De Lannoy, et al., 2018) repositories. The IMERG algorithm intercalibrates, merges, and interpo-
lates passive microwave sensor data, infrared imagery, and conventional rain gage data. The GPM mission
has produced 30-min rainfall estimates at ~9-km grid cell resolution since 2014. The L4 SM
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algorithm assimilates remotely sensed surface soil moisture estimates based on 36-km brightness temperatures
from an L-band radiometer (Chan et al., 2014) into the Goddard Earth Observing System, Version 5 (GEOS-5),
Land Data Assimilation System (see De Lannoy & Reichle, 2016a, 2016b; Reichle et al., 2014), including the
Catchment land surface model (Ducharne et al., 2000; Koster et al., 2000). The Catchment land surface model
solves a water and energy balance forced with conventional and satellite-based meteorological observations
including precipitation, downward shortwave/longwave radiation, wind speed, near-surface air temperature,
specific humidity, and air pressure. The modeling process transfers water between the surface (0-5 cm), the
“root zone” (0-100 cm), and the water table for a network of catchment boundaries (Ducharne et al., 2000;
Koster et al., 2000). An analytical distribution of topographic indices and an empirical function is used to define
the initial configuration of the local water table. The distribution of soil moisture above the water table is set as
an equilibrium profile whose shape is calculated based on soil-hydraulic properties (De Lannoy et al., 2014).
The rise and fall of the water table is controlled by “root zone excess” (i.e., the amount of water, per unit area,
by which the root zone is out of equilibrium; Koster et al., 2000). The root zone excess term considers surface
runoff, infiltration, and evapotranspiration when recalculating the position of the water table for each time
step (Reichle, De Lannoy, Liu, Ardizzone, et al., 2017,Reichle, De Lannoy, Liu, Koster, et al., 2017).

The SMAP mission has produced 3-hr estimates of volumetric water content at the surface (0-5 cm) and mod-
eled values for the near surface (0-100 cm) at ~9-km resolution since 2015 (Reichle, De Lannoy, Liu,
Ardizzone, et al., 2017,Reichle, De Lannoy, Liu, Koster, et al., 2017). We refer to 100-cm SMAP soil moisture
data as “satellite-based” because it is a modeled product that assimilates global 0- to 5-cm surface brightness
observations, as well as other space-borne remote sensing observations including land cover, topography,
and vegetation height (Reichle, Liu, et al., 2018). The soil depth for the BALT1 shallow landslide monitoring
station is ~110 cm, which is consistent with our field mapping of recent landsliding in the area (Collins et al.,
2018). Therefore, we utilized the 100-cm satellite-based soil moisture estimates (Reichle, De Lannoy, et al.,
2018) for our analyses. To provide a normalized comparison of soil wetness, we transformed the volumetric
water content information to soil saturation based on the porosity values used in the Catchment land
surface model.

We converted and resampled the ground- and satellite-based rainfall and soil saturation information to the
minimum common temporal resolution (i.e., 3-hr intervals, local time). The various spatial resolutions of
the ground-based rainfall, satellite-based rainfall, and satellite-based soil saturation data are divided among
Thiessen (1911) polygons (Figure 2), a straightforward approach wherein the percent contributing area of each
polygon within a catchment is used to estimate mean areal rainfall and soil saturation in that catchment.

The spatiotemporal resolution of the ground- and satellite-based data facilitated a regional assessment of
landslide-relevant hydrologic characteristics across climatological- and forecast-relevant time scales. We first
evaluated basic trends in annual rainfall, including the percent difference between each catchment. The sea-
sonal comparisons, for areas of high (>660 mm) and low (<660 mm) mean annual precipitation (MAP; see
Figures 1a and 1b; PRISM 2018), include multimonth periods before (October-December), during (January-
February), and after (March-September) widespread rainfall-induced landsliding. We aimed to evaluate our
data at a temporal scale that is consistent with landslide warning systems that have been deployed in the
United States (Baum & Godt, 2010). Therefore, for the hypothetical landslide thresholds that we developed
for this study, we also tested the degree to which rainy-day (i.e., >0.254 mm, 0.01 in.) accumulations for the
ground- and satellite-based data sets are correlated. The simple coefficient of determination () tests are
binned by MAP and season.

Although spatially variable estimates of soil moisture for the East Bay Hills are available from the SMAP mis-
sion, we have a single ground station (BALT1) that monitors in situ conditions that are relevant to rainfall-
induced shallow landsliding. Therefore, we focused our most direct comparison of ground- and satellite-
based soil saturation on the SL catchment (Figure 1b) and later used the station measurements as a proxy
for threshold comparisons across the nine remaining catchments. We evaluated the WY 2016-2017 soil
saturation time series for the SL catchment with 7* and root mean square error tests binned at the seasonal
level. For comparison of our results to a WY in which no extensive landsliding occurred in our study region
(i.e., WY 2017-2018), we also examined satellite-based soil saturation from these same data sources (i.e., the
BALTI site and NASA SMAP data; see the supporting information). Despite only having one ground-based site
for evaluation, our experience with monitoring in the region indicates that our instrumentation captures
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signals that are applicable to identifying conditions required for landsliding over the broad landscape of the
East Bay Hills (Collins et al., 2012, 2018).

3.2. Objective Definition of Hydrometeorological Thresholds

In addition to comparing landslide-relevant hydrologic characteristics gleaned from satellite-based data to
those obtained from in situ sensors, we also assessed how this information can affect landslide thresholds
that are developed for use in warning systems. For this study, we compare hypothetical empirical thresholds
defined by antecedent soil saturation (so [%]) on the x-axis and 24-hr rainfall (r,4 [mm]) on the y-axis of a
two-dimensional threshold evaluation space. We selected these metrics to reflect a hydrometeorological
threshold space (e.g., Bogaard & Greco, 2018) that includes both “cause” (i.e., soil saturation conditions that
predispose the hillslope to failure) and “trigger” (i.e., the rainfall associated with the timing of landslide
initiation) components. We focus on a 24-hr accumulation level to place our results within the context of
practical rainfall forecasting constraints in the United States (Novak et al., 2014). These thresholds are based
on a sequence of storms in WY 2016-2017, as opposed to longer (multiyear) observational records, and,
therefore, should not be considered validated landslide thresholds for the East Bay Hills. However, the defi-
nition of our ground- and satellite-based thresholds are objective in that they are developed with the same
criteria, providing a comparison for storms where overlapping ground- and satellite-based data coverage
exists for a period of widespread landsliding in the region.

Our most straightforward comparison of landslide thresholds is for the SL catchment, which includes both
ground- and satellite-based observations. We used these data to assemble s, and r,4 data pairs throughout
WY 2016-2017. Observations available to us suggest that widespread landsliding likely occurred over the
course of four storms in January and February 2017 (Collins et al., 2018). Elevated positive pore-water pres-
sures were also observed at BALT1 during these periods. Whereas we know (from media reports and onsite
observations made by the authors) that landsliding occurring during several of these storms, the exact timing
of widespread landsliding in each catchment is unknown. It is highly likely that landsliding occurred in each
catchment during multiple storms, and for this study, we assume landsliding was coincident with the most
intense rainfall during each of these four storm periods. Therefore, we designated the maximum r,4 (and cor-
responding sp) as “landslide days” during the four multiday periods in January and February 2017. We
assigned the rainy-day s, and r,4 pairs outside of these periods, which we evaluated at 12-hr increments,
as “null cases.” The landslide days and null cases distinguish between periods when landsliding is likely
and unlikely, respectively.

We then used receiver-operator characteristic analysis (Fawcett, 2006; Swets, 1988) and two skill statistics
(threat score, TS [Equation (1)], and radial distance, RD [Equation (2)]) to quantitatively evaluate landslide
thresholds across the ground- and satellite-based inputs. At the core of this kind of analysis is a “confusion
matrix” that is calculated for a given threshold. The confusion matrix reflects the number of true positives
(TP; correctly predicted landslide days), false positives (FP; incorrectly predicted landslide days), true nega-
tives (TN; correctly predicted null cases), and false negatives (FN; incorrectly predicted null cases). We fol-
lowed prior precedent (Mirus, Morphew, et al., 2018) and selected a simple bilinear (as opposed to a linear or
more complex power or high-degree polynomial) functional form because the landslide events tend to group
in the upper-right corner of the threshold space. For this study, we optimized the TS and RD for 1 x 10° com-
binations of sy and r,4 (i.e., 0% to 100% saturation at 0.1% levels and 0- to 100-mm rainfall at 0.1-mm levels,
respectively) in the threshold domain. We refer to the optimal s, and r,4 pair, which defines the bottom left-
hand corner of the bilinear threshold, as the critical sy and r,4. The TS is defined as follows:

TP

TS="r—"r
TP + FN + FP

¢y

where TP (—), FN (-), and FP (—) are the numbers of true positives, false negatives, and false positives,
respectively. A TS ranges from 0 to 1, where 1 is a perfect score. The RD is defined as follows:

FP \’ TP 2
RD = \/(FP + TN) * ((TP + FN) _1) @

where TN (—) is the number of true negatives. The RD ranges from 0 to 1, where 0 is a perfect score. The TS
results in a “pessimistic” threshold that is averse to false results, whereas the RD results in an “optimistic” or
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Figure 3. Cumulative rainfall for Water Year 2016-2017 across the 10 focus catchments for the (a) ground- and (b) satel-
lite-based data sets. (c) Percent difference between satellite- and ground-based annual rainfall, with cooler and warmer
colors respectively indicating underprediction and overprediction by the satellite-based product.

more balanced threshold (Mirus, Morphew, et al., 2018; Postance et al., 2018; Staley et al., 2013). We
optimized four empirical bilinear landslide thresholds with ground- and satellite-based data for the SL
catchment to evaluate how the data input types affect the threshold definition.

Using the in situ soil saturation monitoring station (i.e., within the SL catchment; Figure 1b), which is likely
correlative with other adjacent catchments in the region (i.e., LC and DC), we formulated threshold compar-
isons for catchments across the East Bay Hills. Whereas we would prefer one (or more) monitoring stations
recording in situ near-surface hydrologic response in landslide-prone areas of each catchment, these data
types are currently only collected for a handful of sites across the country (e.g., USGS 2019). The BALT1
monitoring station was sited with the intention of being representative of the general regional, topographic,
geologic, hydrologic, and vegetative characteristics of areas in in the East Bay Hills that are prone to shallow
landsliding (Collins et al., 2012). Specifically, the BALT1 site was chosen because it (1) showed evidence of
landsliding in at least two previous major storm events, (2) is a colluvial-filled hollow with at least a 30°
slope, (3) has coarse-grained soil that commonly mobilizes into debris flows, (4) has a soil profile depth of
~1m, (5) is dominated by grassland vegetative cover, and (6) does not show signs of anthropogenic distur-
bance other than cattle grazing, which is widespread in landslide-prone areas of the East Bay Hills. These
are characteristics representative of the 2017 storm-induced landslides in all of our study area catchments.
Therefore, we extended the site-specific (BALT1) soil saturation observations to the nine remaining catch-
ments and paired them with more readily available catchment-specific rain gage data (Figure 2a). With this
approach, we test an information trade-off between ground-based antecedent soil saturation values from a
single site and the more spatially comprehensive satellite-based information. In total, we optimized 40
catchment-specific thresholds (after building a landslide day/null case data set for each catchment) and
defined four East Bay Hills average regional thresholds.

4. Results
4.1. Spatiotemporal Characteristics of Ground- and Satellite-Based Data Sets

Comparisons of annual rainfall across the 10 focus catchments (Figure 3), which we calculated by area-
averaging of data within each catchment, indicate general similarities but also reveal systematic differences
between the ground- and satellite-based information. Both data sets show higher annual rainfall in the
northern catchments, with the lowest accumulations in the southern catchments. However, the satellite-
based totals (Figure 3b) report a narrower range (734-966 mm) compared to the ground-based totals
(742-1,204 mm; Figure 3a). These ranges drive catchment-level differences of up to 28% (Figure 3c). The
satellite-based product generally underpredicts the annual totals, particularly in areas of high MAP
(Figures 1a and 1b; PRISM 2018).
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Figure 4. Ground- versus satellite-based rainfall, averaged for catchments for (top) high and (bottom) low mean annual
precipitation (MAP; see Figures 1a and 1b), (a, b) before, (c, d) during, and (e, f) after the landslide season. Percentages
indicate the difference between the satellite- and ground-based rainfall accumulations.

Despite the narrow 2-month (i.e., January-February) window for the landslide season, storms during this
time typically produce at least one third of the total annual rainfall (PRISM 2018). The ground- and
satellite-based information captures this temporal pattern, with landslide season totals accounting for
~50% of the accumulation in WY 2016-2017 (Figure 4). Similar to the annual totals, satellite-based seasonal
accumulations are generally underpredicted in areas of high MAP. The seasonal totals indicate that the
greatest discrepancies between the ground- and satellite-based sources (up to 36% underprediction;
Figure 4a) occurred before the landslide season began.

Rainy-day accumulations binned across MAP zones and seasons for the ground- and satellite-based products
show a notable degree of scatter (Figure 5). Many of the points lie along the x-axis (i.e., ground-based rainfall)
between 0 and 10 mm, indicating that smaller rainfall accumulations are consistently underpredicted by the
satellite-based data. Three of the four rainiest days during the landslide season are also underpredicted by the
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Figure 5. Rainy-day accumulations for ground- versus satellite-based data sets before, during, and after the landslide sea-
son, averaged for areas of (a) high and (b) low mean annual precipitation (MAP; see Figures 1a and 1b), with sample size
(n) and the coefficient of determination (r2) for a linear regression provided in parentheses. Dashed line indicates 1:1
correspondence (i.e., perfect fit).

satellite data (up to 68% and 47% for the high and low MAP areas, respectively). The poorest rainy-day r*
values (0.3-0.4) occur before the landslide season begins, a trend identical to the seasonal percent
differences. During and after the landslide season, the rainy-day correlations show
moderate improvement (= 0.6).

There is strong temporal correspondence (> = 0.8) between the ground- and satellite-based soil saturation
records at the annual time scale as revealed by the WY 2016-2017 data (Figure 6a). The periods of wetting
and drying (i.e., the rising and falling limbs) in these time series are well aligned, although the magnitude
of change is often different. Before the landslide season (Figure 6b), soil saturation values range from
~30% to 70%. A mid-October 2016 storm induced a spike in soil saturation at the monitoring site during this
time (Figure 6a). The satellite-based peak in mid-October is roughly one half of that from the in situ mon-
itoring data. Despite this difference, by the onset of the landslide season (Figure 6c), the soil saturation
values for both data sets are nearly identical. During the landslide season, soil saturation ranges from
~60% to 90%. Four storms generate sharp soil saturation peaks in the ground-based record. Each time, the
ground-based soil saturation appears to return (or nearly return) to its prestorm level within a few days.
In contrast, the satellite-based data show four lower amplitude and asymmetric pulses with very little desa-
turation. Instead, the overall soil saturation increases throughout the 2-month period, resulting in the largest
difference between the two data sets. After the landslide season (Figure 6d), soil saturation values range from
~40% to 70%. The impacts of a few rainstorms are visible in both records, but a drying trend dominates the
response in both. At the end of the WY, the ground- and satellite-based soil saturation values nearly match.
Comparisons of the ground- and satellite-based data across the three seasons results in 7* values of 0.8, 0.3,
and 1.0, respectively (Figures 6b-6d). Unlike the rainfall data, the poorest soil saturation correlation (and
highest root mean square error, 12.9%) occurs during, rather than before, the landslide season. Although cor-
relations are good before and after the landslide season, the very low correlation during the landslide season
is reflective of an overall increasing soil moisture trend in the SMAP data.

4.2. Spatially Variable Hydrometeorological Thresholds

The most direct comparison of hydrometeorological thresholds that we developed with ground- versus
satellite-based information is for the SL catchment because this is where our subsurface monitoring instru-
mentation is located (Figure 1). The overall pattern of the s, (antecedent soil saturation) and r4 (24-hr rain-
fall) pairs for the two threshold spaces (ground- and satellite-based) is similar for the TS metric (Figures 7a
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Figure 6. (a) Ground- versus satellite-based 3-hr soil saturation for the San Leandro (SL; see Figure 1b) catchment (b)
before, (c) during, and (d) after the landslide season. The four dark red vertical bars in (a) correspond to the most likely
time windows for which landsliding was observed. Symbols n, %, and RMSE respectively indicate the sample size, coef-
ficient of determination for a linear regression, and root mean square error. Dashed line indicates 1:1 correspondence (i.e.,
perfect fit).

and 7b) and RD metric (Figures 7c and 7d). Both data sets exhibit low to intermediate s, and r,4 values before
the landslide season, recording the hydrologic “wetting-up” for the upcoming landslide season. During the
landslide season, the s, and r,4 values are at their highest, coincident with the arrival of the most powerful
storms. The after-landslide season data generally cluster on either side of the before-landslide season data,
recording the climatological transition from cool/wet to warm/dry conditions, as well as a departure from
elevated hazard potential. Based on our field observations, we plot four landslide-generating s, and r,4
pairs in the ground- and satellite-based data sets (Figures 7a-7d) for each of the January and February
2017 storms in which landsliding occurred. Taken together, the four ground-based s, landslide days
exhibit a narrower range than do the satellite-based s, events, whereas the r,4 ranges for both sources are
nearly the same.

The SL ground-based s, and r,, landslide days are more distinguished from the null cases than in the
satellite-based data (Figures 7a and 7b). Correspondingly, the ground-based optimizations via TS and RD
result in thresholds that capture all four landslide days without erroneously including any of the null cases
(Figures 7a and 7c). Therefore, both optimization metrics produce identical thresholds with perfect scores
for the ground-based data. The satellite-based data result in thresholds with less than perfect scores (mean
TS = 0.505; RD = 0.041) because the four landslide days are not as well isolated from the null cases
(Figures 7b and 7d). The satellite-based threshold that we optimized with the TS (a statistic averse to false
alarms) results in a narrower threshold space, missing one of the four landslide days to avoid incorporating
additional null cases. In contrast, the satellite-based threshold that we optimized by the RD captures all four
landslide days but at the expense of including more null cases, particularly some false alarms not just during
but also well after the landslide season.

The spatially variable landslide thresholds that we developed for each of our catchments (Figure 8) reflect
hydroclimatic patterns in the region, as well as differential sensitives to the metric by which we optimized
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Figure 7. Empirical bilinear ground- and satellite-based landslide thresholds for the San Leandro (SL; see Figure 1b)
catchment optimized by (a, b) threat score (TS) and (c, d) radial distance (RD). Large and small symbols respectively
indicate landslide days and null cases.

the soil saturation and rainfall data. When we optimized the ground-based landslide thresholds by the TS
and RD by catchment (Figures 8a and 8c), the critical s and r»4 (i.e., the bottom left corner of the bilinear
threshold) ranged from 61.5% to 66.6% (mean = 65.3%; Table 1) and from 24.4 to 37.3 mm
(mean = 29.4 mm; Table 1), respectively. The relatively narrow s, range for the ground-based thresholds
(Figures 7a and 7c) suggests that the timing of the r,4 data is similar, lending some confidence to our
extension of the site-specific soil saturation data from BALT1 across the 10 focus catchments. The wide
1,4 range reveals more realistic spatial patterns in rainfall totals compared to the site-specific s, data that
we used in this study. For example, the threshold for the San Pablo (SP) catchment (Figures 8a and 8c),
which is located in the wetter northern hills, requires ~40% more rainfall compared to the Don Castro
Reservoir (DC) catchment, which is located in the drier southern hills (i.e., 37.3 versus 28.1 mm,
respectively). The satellite-based critical s, values that we optimized by TS range from 66.0% to 81.6%
(mean = 74.3%; Table 1), and the critical r,4 values range from 18.4 to 28.1 mm (mean = 24.9 mm; Table
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Figure 8. Ground- and satellite-based landslide thresholds for the 10 focus catchments (Figures 1a and 1b) optimized by
(a, b) threat score (TS) and (c, d) radial distance (RD). White diamonds indicate the bottom left-hand corner of the bilinear
threshold for each catchment and represent critical antecedent soil saturation and 24-hr rainfall levels. Black diamond
indicates mean of all catchment-specific critical threshold levels for the East Bay Hills study region.

1). When we optimized the RD (Figures 8b and 8d), the critical s, ranges from 61.8 to 70.7 (mean = 66.4%;
Table 1) and the critical r,4 range remains the same. These ranges reflect higher satellite-based critical s,
values and lower satellite-based critical r,4 values.

5. Discussion

5.1. Rainfall Characteristics

Our analysis of the NASA GPM-based IMERG data across the 10 focus catchments (Figures 1a and 1b)
reveals that the satellite-based product can reproduce the overarching spatiotemporal rainfall patterns we
would expect to see in the East Bay Hills of the SF Bay Area. The annual satellite-based rainfall totals are gen-
erally higher in the northern hills than in the southern hills, a pattern that is consistent with the ground-
based observations (Figures 3a and 3b). The relative proportions of rainfall before, during, and after the
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Table 1 landslide season are also similar to the ground-based data (Figure 4).
Summary of Threshold Characteristics for Each Catchment However, the annual rainfall for 80% of the catchments is underpre-

Ground based Satellite based dicted by the satellite-based data. The smooth transitioning and nar-
Catchment® Soc  Tae TSRD Soe Frac TS, RD row range of spatially variable rainfall totals in the satellite data

(Figure 3b), likely a result of kilometer-scale averaging and calibra-

Hercules (HC) 64.7 323 Lo 739,618 27.5 0.600,0.033 ., effects, limit the ability of the satellite-based thresholds to resolve
Martinez (MZ) 64.7 283 1,0 68.0,68.0 26.6 0.444,0.033 . . . .

San Pablo (SP) 6.6 373 Lo 792 68.0 263  0.600.0.033 catchment-level differences in hazard potential (Figures 8b and 8d).
Berkeley (BK) 66.6 34.9 1,0 755,645 281 0.600, 0034  The satellite-based rainfall underestimation trend is also visible in
Lafayette (LF) 66.6 30.4 1,0 81.6,70.7 24.1  0.429, 0.050 the seasonal comparisons (Figure 4). With the exception of the land-
San Leandro (SL)  66.6  27.6 1,0 776,664 26.0 0.500,0.044 slide season for low MAP catchments, the satellite-based rainfall
el Chabzi (UE) - Eea 24 Lo 763,654 245 0500,0043 )5 appear low, suggesting that the use of an antecedent rainfall
San Ramon (SR) 66.6 26.2 1,0 66.3,66.3 184  0.333, 0.058 . . . . . .
Don Castro (DC)  61.5 281 L0 660 660 249 0444 0037 metricto identify the onset of the landslide season in our study region
Pleasanton Ridge  62.6  24.5 1,0 784,673 22.6 0.600,0.043  would produce a late start date. The marginally better performance

(PR) for low MAP areas, which exhibit lower-lying topography, confirms
Regional Mean 653 294 1,0 743,664 249 0.5050.041  that satellite-based rainfall products tend to show sensitivity to more
Note. so.c = critical antecedent soil saturation (%); r»4.c = critical 24-hr rainfall ~ complex topography that is susceptible to orographic effects (e.g.,
gmm); TS = threat score (—); RD = radial distance (). Brunetti et al., 2018; Derin & Yilmaz, 2014; Monsieurs et al., 2018;

Catchments are shown in Figures 1a and 1b. Rossi et al., 2017; Zambrano-Bigiarini et al., 2017).

Some of the best rainy-day correlations between the ground- and
satellite-based products in our study correspond to the landslide season (Figure 5). However, the high degree
of scatter that is apparent in some of the daily comparisons throughout WY 2016-2017 suggests that even
lower rainfall accumulation windows (e.g., 3 or 6 hr), which would be more characteristic of convective,
high-intensity/short-duration rainstorms, may not be resolvable in satellite-based thresholds (see also
Rossi et al., 2017). This may be particularly important in watersheds impacted by wildfire, where short bursts
of high-intensity rainfall are capable of triggering deadly and destructive debris flows (Staley et al., 2017).
Based on our comparisons of longer (i.e., monthly and annual) rainfall levels, we may expect multiday accu-
mulation periods to exhibit slightly lower percent differences than those based on the 24-hr comparisons.
However, if multiday accumulation periods were used for thresholds in an operational context, they would
have to be balanced against the drop-off in rainfall forecasting skill for periods exceeding 24 hr (Novak
et al., 2014).

5.2. Near-Surface Hydrologic Response

In the months leading up to the landslide season, when the soils are relatively dry, the near surface is char-
acterized by capillary-dominated flow processes (Collins et al., 2012; Keefer et al., 1987; Wilson & Jayko,
1997). Here the ground- and satellite-based soil saturation data show good correlation with nearly identical
values by the start of the landslide season (Figures 6a and 6b). During the WY 2016-2017 landslide season,
after each of the four major storms, the ground-based soil saturation returns (or nearly returns) to its pre-
storm level within days, approximating the field capacity (i.e., the amount of water that a soil can hold
against free drainage). This gravity-dominated response reflects a seasonal transition from locally controlled
to topographically controlled soil moisture states (Grayson et al., 1997). In contrast, the satellite-based soil
saturation data do not return to the field capacity after each storm but rather show an increasing soil satura-
tion trend in response to storms throughout and even following the landslide season (Figures 6a and 6c),
implying that hazard potential could extend well into April. During the landslide season, the ground- versus
satellite-based soil saturation data exhibit the weakest correlation (Figure 6¢). The return to higher correla-
tions between the two data sets after the landslide season (Figure 6d), when the soil is drying out, suggests
that the satellite-based soil saturation states may better reflect the capillary- as opposed to gravity-dominated
subsurface flow observations.

We do not evaluate the absolute accuracy of the SMAP data but rather whether or not it is useful for captur-
ing the antecedent conditions relevant to shallow landsliding. By investigating the analytics used to calculate
the satellite-based data, we find compelling scientific evidence for important discrepancies between the data
sets. The satellite-based soil saturation data provide a catchment-integrated view of soil saturation with
snapshots of soil moisture that are redefined through time. They do not account for hillslope-scale variability
in soil depth, vadose zone thickness, and, perhaps most importantly, local topographic slope. In contrast, the
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in situ monitoring data are recording soil saturation dynamics high in the catchment among the steepest
(and most landslide-prone) slopes, where the near surface drains more quickly, “resetting” the soil satura-
tion to lower levels between each storm. This difference between the ground- and satellite-based soil satura-
tion data (Figure 6), which is most exacerbated during (and just after) the landslide season, is a critical detail
reflected in our comparisons of threshold performance (Figure 7). Rather than the s, values across the four
January and February storms that resemble the field capacity, the satellite-based sy is progressively higher
from one storm to the next (Figure 6a). The upward trend in satellite-based soil saturation leads to r,4 values
that are paired with a wider range of s, values than the ground-based data during and after the landslide sea-
son, indicating that the sy and r,4 landslide days are not as readily distinguishable from the null cases. The
satellite-based thresholds, therefore, host false positives and correspondingly lower predictive capabilities
(Table 1). Although the satellite-based thresholds consistently show lower performance than do the
ground-based thresholds, their TS and RD values (mean = 0.505 and 0.041, respectively) suggest these
hydrometeorological thresholds may be more useful than rainfall-only thresholds (e.g., the maximum TS
for Seattle Area rainfall thresholds reported in Tables 1-3 of Scheevel et al., 2017, is ~0.1).

Adjusting the satellite-based data with relatively straightforward transformations does not markedly
improve the performance of our satellite-based thresholds. For example, when we applied a simple vertical
offset to the WY 2016-2017 satellite-based data (Figure S10), we found that the soil saturation is still over-
predicted. Our comparison of the ground- and satellite-based data for a recent non-landslide year (i.e.,
WY 2017-2018) further verifies the tendency of the SMAP data to overpredict seasonal soil moisture
(Figure S11). Here soil moisture is overpredicted for nearly the entire WY following the first major storm
of the season, whether a vertical correction is included or left out. This introduces the potential for producing
false positives if used for warning system purposes. We also see that the satellite-based surface (0-5 cm) soil
moisture product exhibits higher-amplitude fluctuations than does the near-surface (0-100 cm) product due
to the increased effects of evapotranspiration but retains an overall wetting trend during the landslide season
(Figure S12). When we optimized our thresholds with this surface soil moisture data, the TS remained the
same and the RD improved only marginally (Figure S13). Whereas the surface product reveals more appar-
ent wetting/drying trends than does the near-surface product, it does not reflect the correct soil moisture
processes at landslide-relevant depths. Hybrid thresholds, which pair satellite-based soil moisture with
ground-based rainfall (and vice versa), produce threshold performance scores in between the purely
ground- and satellite-based thresholds (Figure S14). Both hybrid approaches incorporate false positives;
however, the threshold that pairs satellite-based rainfall with ground-based soil moisture performs better.
These findings confirm that satellite-derived soil moisture is missing key subsurface hydrologic elements
needed to capture hillslope drainage following storms.

5.3. Directions for Further Investigation

One possible research direction to address the inability of the land surface model to capture hillslope hydro-
logic response for periods of gravity-dominated flow would be to use the equilibrium profile from the water
balance as an initial condition for physics-based simulations of variably saturated flow that are forced with
ground-based rainfall (e.g., Yatheendradas et al., 2019). Our experience using vertical (i.e., infiltration-
focused) boundary-value problems to simulate pore-water pressure development at the soil/weathered bed-
rock interface (i.e., Thomas, Mirus, & Collins, 2018; Thomas, Mirus, Collins, Lu, et al., 2018) suggests that
multidimensional simulations may be critical to accommodate the possible impacts of unsaturated zone pre-
ferential flow (e.g., Gerke, 2006; Germann & Hensel, 2006; Nimmo, 2012) and lateral saturated flow within
unchanneled catchments (e.g., Mirus et al., 2007). Another possibility would be to explore further downscal-
ing the SMAP L4_SM data with higher-resolution vegetation, soil, topographic, surface temperature, and
hydroclimatic information (e.g., Abbaszadeh et al., 2018). However, the progressive increase for the
satellite-based soil moisture throughout the landslide season would still be problematic for any static
downscaling techniques.

Our work highlights the value of in situ measurements for understanding hillslope hydrologic response
dynamics relevant to landsliding. These network types are relatively inexpensive compared to the installa-
tion of satellite-based networks. Like rain gages, however, it can be difficult to know the spatial applicability
of a single sensor measuring in situ soil moisture. Climatic, topographic, and geologic heterogeneities pose
challenges to establishing monitoring stations that aim to be physically and statistically representative of
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near-surface hydrologic response over large areas. An important step towards this goal is an explicit set of
siting criteria (e.g., regionally relevant soil type, soil depth, bedrock type, vegetation, topography, and land-
slide history), as applied to the shallow landslide monitoring station whose data we used in this study
(Collins et al., 2012). Our results suggest that a well-sited landslide monitoring station may be applicable
for regional-scale applications and encourages more widespread deployment of near-surface hydrologic
monitoring stations to inform hydrometeorological threshold development.

As the collection of overlapping ground- and satellite-based hydrologic data coincides with future, landslide-
relevant hydrologic events, it will be important to expand upon the analyses presented here with additional
work to explore how ground-based thresholds perform compared to their satellite-based counterparts using
more sophisticated analysis techniques (e.g., applying time-derivative plots and variable time scales of rain-
fall accumulation) across interregional scales for multiyear periods. These kinds of results will broaden
understanding beyond our conclusions based on a single (but highly important) year of ground- and
satellite-based data that corresponded with widespread shallow landsliding.

6. Conclusion

We found that hydrometeorological (i.e., 24-hr rainfall versus antecedent soil saturation) thresholds opti-
mized with soil moisture dynamics from a single but carefully sited monitoring station in the SF Bay Area
(California, USA) outperform those based on more spatially comprehensive satellite-based information. A
nearly constant upward trend in the satellite-based soil saturation during the landslide season, as opposed
to a punctuated wet up and subsequent dry down to the field capacity after each storm, results in landslide
days that do not distinguish themselves from the null cases as captured by ground-based instrumentation.
The satellite-based thresholds appear to be more sensitive to the particular skill statistics used for optimiza-
tion than to catchment-level variability in rainfall and soil saturation, although their overall performance
suggests that these hydrometeorological thresholds may be more useful than rainfall-only thresholds. At
the regional level, the ground- and satellite-based threshold values were nearly indistinguishable but with
more false alarms caused by overestimated soil moisture levels associated with the satellite-based data. In
areas with nonexistent in situ monitoring networks, cautious implementation of a satellite-based warning
system may be possible, although our findings suggest that warnings may be conservative and negatively
impact the predictive capabilities of thresholds for rainfall-induced landsliding. The paired collection of
ground- and satellite-based hydrologic observations associated with future widespread landsliding events
will be critical to further evaluate the performance of satellite-based thresholds.
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