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Abstract This work presents an efficient mathematical/numerical model to compute the sensitivity
coefficients of a predefined performance measure to model parameters for one‐dimensional steady‐state
sequentially coupled radionuclide transport in a finite heterogeneous porous medium. The model is based
on the adjoint sensitivity approach that offers an elegant and computationally efficient alternative way to
compute the sensitivity coefficients. The transport parameters include the radionuclide retardation factors
due to sorption, the Darcy velocity, and the effective diffusion/dispersion coefficients. Both continuous and
discrete adjoint approaches are considered. The partial differential equations associated with the adjoint
system are derived based on the adjoint state theory for coupled problems. Physical interpretations of the
adjoint states are given in analogy to results obtained in the theory of groundwater flow. For the
homogeneous case, analytical solutions for primary and adjoint systems are derived and presented in closed
forms. Numerically calculated solutions are compared to the analytical results and show excellent
agreements. Insights from sensitivity analysis are discussed to get a better understanding of the values of
sensitivity coefficients. The sensitivity coefficients are also computed numerically by finite differences. The
numerical sensitivity coefficients successfully reproduce the analytically derived sensitivities based on
adjoint states. A derivative‐based global sensitivity method coupled with the adjoint state method is
presented and applied to a real field case represented by a site currently being considered for underground
nuclear storage in Northern Switzerland, “Zürich Nordost”, to demonstrate the proposed method. The
results show the advantage of the adjoint state method compared to other methods in term of
computational effort.

1. Introduction

Sensitivity analysis of mathematical or numerical models describing physical processes is important for
obtaining an enhanced understanding of system performance. It involves the computation of sensitivity coef-
ficients. These coefficients reflect the sensitivities of user‐defined scalar measures of system behavior or
model performance, called performance measures, to various model parameters. For instance, they are used
to determine the relative sensitivity of performance measures with respect to the parameters of the system
(Lu & Vesselinov, 2015; Sykes et al., 1985; Wilson & Metcalfe, 1985), to guide gradient search in nonlinear
optimization (Hayek et al., 2008), or to perform first‐ and second‐order, second‐moment uncertainty analyses
(Li & Yeh, 1998).

Sensitivity coefficients are first derivatives indicating the rate of performance measure change caused by a
small perturbation of the parameters. Literature review indicates that there are threemethods, which are fre-
quently used in the calculation of sensitivity coefficients: the influence coefficient method known also as the
perturbationmethod (Yeh, 1986), the sensitivity method (Sun, 1994), and the adjoint state method (Chavent,
2009; Sun, 1994). The influence coefficient method uses the concept of parameter perturbation. It consists in
perturbing each parameter (one at a time) by a small amount and solving the system of governing equations
subject to the imposed initial and boundary conditions. The sensitivity coefficients are then obtained by finite
differences. If there are Np parameters to be investigated, then the system of governing equations has to be
solved Np+1 times to produce the sensitivity coefficients. The sensitivity method consists in deriving directly
the performance measure with respect to the parameters. This involves the derivatives of the state variables
(e.g., hydraulic head and concentrations) with respect to the parameters. Theses derivatives, known as the
state sensitivities, are the solutions of the system of sensitivity equations. This latter is obtained by taking
the partial derivatives with respect to each parameter in the governing equations and the initial and bound-
ary conditions. The number of system of equations to be solved to generate the sensitivity coefficients is Np
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+1, which is the same as that of the perturbation method. For problems with large number of parameters, the
approaches based on the perturbation and sensitivity methods become prohibitively expensive. In this
context, the adjoint sensitivity method is an alternative approach, which offers an elegant and
computationally efficient way to compute the sensitivity coefficients. The adjoint methodology separates
the sensitivity analysis into two distinct stages. The first one relates exclusively to the performance
measure, while the second stage relates exclusively to the sensitivity parameter. The adjoint state from the
first stage provides a link between the two stages. This method requires the resolution of an additional
system called the adjoint state system. Therefore, for a given performance measure only two systems have
to be solved (the primary system of governing equations and the adjoint state system) independently from
the number of sensitivity parameters.

The adjoint state method has been used successfully in a wide range of disciplines such as mathematical phy-
sics, geophysics, systems engineering, economics, constrained optimization, nuclear engineering, electrical
engineering, meteorology, oceanography, hydrogeology, petroleum engineering, and seismology. In hydro-
geology, the adjoint state method has been employed in many applications including interpretation of inter-
ference tests using geostastistical techniques (de Marsily et al., 1984), steady‐state groundwater flow (Sykes
et al., 1985; Wilson & Metcalfe, 1985), groundwater travel time uncertainty analysis (LaVenue et al., 1989),
automated calibration of transmissivity fields (LaVenue et al., 1995; RamaRao et al., 1995), coupled non-
linear multiphase multicomponent flow (RamaRao & Mishra, 1996), modeling multidimensional ground-
water flow (Clemo, 2007), adaptive multiscale parameterization of flow in unsaturated porous media
(Hayek et al., 2008), transient groundwater flow in a bounded model domain (Lu & Vesselinov, 2015), frac-
tured dual‐porosity media (Delay et al., 2017; Fahs et al., 2014), and coupled surface water‐groundwater
modeling (RamaRao et al., 2017). However, few applications of the adjoint state method have been devoted
to solute transport (e.g., Larbkich et al., 2014; Michalak & Kitanidis, 2004; Neupauer & Wilson, 1999, 2001;
Piasecki & Katopodes, 1997).

Motivated by the worldwide interest in geologic disposal of radioactive wastes, this work presents the adjoint
state method applied to the problem describing sequentially coupled radionuclide (RN) transport in a
steady‐state regime. Indeed, geological waste repositories are constructed to isolate radioactive wastes from
the environments in many countries. Performance assessments at potential nuclear waste repository sites
require the capability to model coupled RN transport processes. The release of RNs from radioactive wastes
through the geosystem is typically simulated using numerical models. The sensitivity of the numerical solu-
tion to model parameters is often of interest for the demonstration of safety of geologic disposal.

A full mathematical/numerical adjoint sensitivity model to calculate the sensitivity coefficients of transport
parameters in heterogeneous porous media is presented. The model applies for an arbitrary number of RN
decay chain members and the transport parameters include the RN retardation factors due to sorption, the
Darcy velocity, and the effective diffusion/dispersion coefficients. Following the continuous adjoint state
approach, the system of partial differential equations (PDEs) representing the adjoint states is derived accord-
ing to the adjoint state theory for coupled problems (Sun, 1994). The sensitivity coefficients are then obtained
by simple integration based on the analytical expressions. The discrete adjoint approach that consists in
deriving the adjoint state equations of the numerical model directly from the discretized (matrix) equations
associated with the primary problem is also presented. For the case of a homogeneous porous medium, ana-
lytical solutions to both primary and adjoint systems are derived for two performancemeasures: combination
of RN concentrations at a point and combination of spatially integrated RN concentrations. Numerical solu-
tions associated with primary and adjoint systems are implemented in MATLAB and compared to the analy-
tical results. The analytical sensitivity coefficients are also compared to those obtained numerically using the
perturbation method. Finally, a derivative‐based global sensitivity method coupled with the adjoint state
method is presented and applied to a real field case represented by a site currently being considered for under-
ground nuclear storage in Northern Switzerland, “Zürich Nordost”, to demonstrate the proposed method.

2. Mathematical Theory
2.1. Governing Equations

Sensitivity analysis of a model provides the first‐order derivatives of some function J of the output variables
with respect to the uncertain input parameters of the system. This function, which known as the
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performance measure and also called the objective function, is a scalar measure of system behavior or model
performance. In this work, we are interested in the model describing steady‐state sequentially coupled RN
transport in heterogeneous porous media. The governing equations for one‐dimensional steady‐state con-
centrations ofN RNs undergoing advection, hydrodynamic dispersion, and sequential first‐order decay reac-
tions write for i = 1,…,N and 0 ≤ x ≤ L as follows:

Li≡
d
dx

Di
dCi

dx

� �
−

d
dx

VCið Þ−ϕkiRiCi þ ϕki−1Ri−1Ci−1 ¼ 0 (1)

where ϕ is the porosity of the porous medium (−), V is the Darcy velocity (ML−1), andDi, Ri, ki, and Ci are the
effective diffusion/dispersion coefficient (ML−2), the retardation factor due to sorption (−), the decay con-
stant (T−1), and the concentration of the ith RN (ML−3), respectively. In equation (1), Li is the transport
operator defining the ith transport equation. Note that k0 = 0 indicating that L1 involves only the parent
RN concentration C1. The parameters ϕ, V, Di, and Ri are in general dependent on the space coordinate x.
They are constant in the case of homogeneous porous medium.

Two problems are considered in this work. Problem A assumes prescribed concentrations (Dirichlet condi-
tions) at the upstream boundary (i = 1,…,N):

LBi≡Ci 0ð Þ ¼ C0
i (2)

while prescribed fluxes (Neuman conditions) are considered for Problem B (i = 1,…,N)

LBi≡−V 0ð ÞCi 0ð Þ þ Di 0ð Þ dCi

dx
0ð Þ ¼ −F0

i (3)

where C0
i and F0

i>0 are given prescribed concentration and flux associated with the ith RN at the upstream
boundary. In equations (2) and (3), LBi is used to indicate the boundary operator of the ith transport equation.

For both problems, it is assumed that the RN concentrations are zero at the downstream boundary (i= 1,…,N):

Ci Lð Þ ¼ 0 (4)

2.2. Sensitivity Coefficient

The general form of a performance measure associated with the above mathematical model may be written
as an integral in the space domain as follows:

J ¼ ∫
L

0 f p;Cð Þdx (5)

where f is a function of the system state of the N‐dimensional vector of concentrations C = (C1,C2,…,CN)
T

and the vector p¼ p1; p2;…; pNp

� �T
of Np system parameters. Any physical parameter (i.e., retardation factor

of any RN, effective diffusion/dispersion coefficient associated with any RN, or Darcy velocity) could be a

sensitivity parameter, pk.

In equation (5), the function f is integrated over the length L of the spatial domain. This function could be any
function of the concentrations vector. In sensitivity analysis, we are interested in computing the sensitivity of
the performance measure with respect to a particular system parameter, pk. One measure of this sensitivity is
the first derivative of J with respect to pk, denoted by ∂J/∂pk and called herein the sensitivity coefficient. It can
be evaluated by direct derivation of (5):

∂J
∂pk

¼ ∫
L

0
∂f
∂pk

þ ∑
N

i¼1

∂f
∂Ci

ψik

� �
dx (6)

where ψik = ∂Ci/∂pk is the sensitivity of the RN concentration Ci with respect to the specified parameter pk
and is called the state sensitivity. For complicated problems finding the state sensitivities ψik can be cumber-
some and expensive. An alternative solution is the use of an adjoint approach, in which the sensitivity coef-
ficients are given in terms of adjoint state functions λi(x) associated with the state concentrations Ci(x).
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3. Adjoint Approach

Two alternative procedures are available for the derivation of the adjoint state equations associated with
a numerical model: the continuous approach and the discrete approach. The continuous approach con-
sists in deriving the partial differential equations of the adjoint state functions starting from those repre-
senting the primary problem (1) and then discretize them in the numerical model. The discrete
approach consists in deriving the adjoint state equations directly from the discretized (matrix) equations
associated with the primary problem (1). Both approaches are used in this work and they are
presented below.

3.1. Continuous Approach

According to the theory of adjoint states for coupled problems (Sun, 1994), the vector of adjoint states
λ = (λ1, λ2,…, λN)

T is solution of the adjoint system defined by

∇*
CLλ þ ∂f

∂C
¼ 0 (7)

The associated boundary conditions are

λ ¼ 0 or ∇*
CLBλ ¼ 0; at x ¼ 0 (8)

λ ¼ 0; at x ¼ L (9)

The first equation of (8) (i.e., λ = 0) is used when the primary problem is subject to Dirichlet boundary con-

dition (Problem A), while the second equation (i.e.,∇*
CLBλ ¼ 0) is used when the primary problem is subject

to Neumann boundary condition (Problem B).

The sensitivity coefficients are expressed in terms of the adjoint states as follows:

∂J
∂pk

¼ ∫
L

0
∂f
∂p

þ∇*
pLλ

� �
k

dx þ ∇*
pLBλ

���
x¼0

h i
k

(10)

In the above equations,∇*
CL and∇*

pL are the adjoint operators of matrices∇CL and∇pL, gradient operators

of L = (L1,L2,…,LN)
T with respect to C and p, respectively. The definitions of operators ∇CL and ∇pL and

their associated adjoint operators ∇*
CL and ∇*

pL are given in Appendix A.

In equation (10), [·]k represents the kth component of [·]. The first term ∫
L

0 ∂f =∂p½ �kdx represents the contri-
bution of the performance measure. It can be calculated analytically by direct differentiation. This term

vanishes when f is independent of the parameter in consideration. The second term ∫
L

0 ∇*
pLλ

h i
k
dx involves

the adjoint states solutions of the adjoint system (7)–(9). It can be calculated by simple integration after the

evaluation of the elements of the adjoint matrix∇*
pL. The last term ∇*

pLBλ
���
x¼0

h i
k
indicates the effect of the

boundary conditions. This term is an integral over the domain boundary. In the case of a one‐dimensional
problem, the boundary is restricted to the point (x = 0). This term vanishes when the boundary conditions
are independent of the parameter in consideration. This holds for Problem A. However, this term has to be
considered for the computation of the sensitivities ∂J/∂V and ∂J/∂Di for Problem B where the boundary

operators LBi depend on both V and Di (see equation (3)). The transpose adjoint boundary operator ∇*
CLB

has the same form as ∇*
CL, except that L is changed to LB = (LB1, LB2,…,LBN)

T.

Using the definitions of the adjoint operators, the adjoint system (7) writes in form of PDEs as follows (see
Appendix A for the detailed derivation):
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d
dx

Di
dλi
dx

� �
þ d
dx

Vλið Þ−ϕkiRiλi þ ϕkiRiλiþ1 þ ∂f
∂Ci

¼ 0 (11)

for i = 1,…,N and 0 ≤ x ≤ L.

In equation (11) λN+1 = 0. This indicates that the Nth adjoint state is independent of those associated with
the remaining RNs. Contrary to the transport system (1) where RN1 is the parent radionuclide (RN) and
each RN concentration of the decay chain depends on its parent, the adjoint system has a backward beha-
vior. The adjoint state variable λN associated with the RN N plays the role of parent of all state variables
and so it is independent of all other λi.

The boundary conditions associated with equation (11) depend on the type of boundary conditions asso-
ciated with the primary problem. They are given by

λi 0ð Þ ¼ 0; λi Lð Þ ¼ 0 (12)

for Problem A, and

dλi
dx

0ð Þ ¼ 0; λi Lð Þ ¼ 0 (13)

for Problem B.

A detailed discussion about the derivation of (12) and (13) is also provided in Appendix A.

Generally, the adjoint system of PDEs (11) together with boundary conditions (12) or (13) may be discretized
and solved numerically by any numerical scheme to obtain the adjoint states. However, for specific cases (for
some specific performance measures) the system may be solved analytically as shown later on.

The sensitivity coefficients may be obtained after using the solutions of systems (11) and (12) or (11) and (13)
by applying (10). This latter may be rewritten as

∂J
∂pk

¼ ∫
L

0
∂f
∂pk

þ ∑
N

i¼1

∂Li
∂pk

� �*
λi xð Þ

" #
dx þ ∑

N

i¼1

∂LBi
∂pk

� �*
λi 0ð Þ (14)

The terms ∂f/∂pk, [∂Li/∂pk]
*, and [∂LBi/∂pk]

* depend on the parameter of interest and on the solution of the
primary problem, while the adjoint states λi depends only on the performance measure.

3.2. Discrete Approach

The discrete approach consists in deriving the adjoint state equations directly from the discretized equations
associated with the primary problem. The discretized matrix system associated with problem (1) may be
written in matrix form as follows:

Ai½ � C*
i

	 
þ Bi½ � C*
i−1

	 

− Gif g ¼ 0f g (15)

where C*
i

	 

is the vector of unknown concentrations at nodes or elements of the discretized numerical grid

and associated with the ith RN, {Gi} is a known vector, which depends on the boundary conditions, and [Ai]
and [Bi] are the matrices associated with the discretized numerical scheme. Note that [B1] = 0 since the par-
ent RN is independent of the other RNs. The system of matrix equation (15) can be solved successively by
solving first the system associated with the parent RN (i.e., A1½ � C*

1

	 
 ¼ G1f g).

The discretized form of the performance measure (5) may be written as J ¼ F p;C*
� � ¼ ∑

n

k¼1
f k p;C*
� �

, where

F and fk are given scalar functions, which depend on the performance measure type and n is the number of
nodes or elements.

Multiplying (15) by an arbitrary vector λ*i
	 


of dimension n and summing for all i = 1,…,N, we get after add-

ing the obtained summation to J
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J ¼ F p;C*� �þ ∑
N

i¼1
λ*i
	 
T

Ai½ � C*
i

	 
þ Bi½ � C*
i−1

	 

− Gif g� �

(16)

The vector λ*i
	 


is called the (discretized) adjoint state vector associated with the ith RN, which must be

determined.

Deriving (16) with respect to a given sensitivity parameter pk, we get

∂J
∂pk

¼ ∂F
∂pk

þ ∑
N

i¼1

∂F
∂ C*

i

	 
 ∂ C*
i

	 

∂pk

þ ∑
N

i¼1
λ*i
	 
T ∂ Ai½ �

∂pk
C*
i

	 
þ ∂ Bi½ �
∂pk

C*
i−1

	 

−
∂ Gif g
∂pk

þ Ai½ � ∂ C*
i

	 

∂pk

þ Bi½ � ∂ C*
i−1

	 

∂pk

 !
(17)

After some mathematical manipulations, equation (17) can be rearranged to obtain

∂J
∂pk

¼ ∂F
∂pk

þ ∑
N

i¼1
λ*i
	 
T ∂ Ai½ �

∂pk
C*
i

	 
þ ∂ Bi½ �
∂pk

C*
i−1

	 

−
∂ Gif g
∂pk

� �

þ ∑
N

i¼1
λ*i
	 
T

Ai½ � þ λ*iþ1

	 
T
Biþ1½ � þ ∂F

∂ C*
i

	 
 !
∂ C*

i

	 

∂pk

(18)

In the derivation of equation (18) we assumed that λ*Nþ1

	 
 ¼ 0f g. This is a necessary condition for the reso-

lution of the adjoint system.

As the adjoint state vector λ*i
	 


is arbitrary then terms in equation (18) containing
∂ C*

if g
∂pk

can be eliminated by

letting

λ*i
	 
T

Ai½ � þ λ*iþ1

	 
T
Biþ1½ � þ ∂F

∂ C*
i

	 
 ¼ 0f g (19)

Taking the transpose of (19), thus, the adjoint state system becomes

Ai½ �T λ*i
	 
þ Biþ1½ �T λ*iþ1

	 
þ ∂F

∂ C*
i

	 
T ¼ 0f g (20)

The discretized adjoint state system is solved first for i=N by using the condition λ*Nþ1

	 
 ¼ 0f g. Then, it can
be solved successively and (forwardly) for i = N − 1,N − 2,…,1.

The sensitivity coefficient is then obtained from (18) as follows:

∂J
∂pk

¼ ∂F
∂pk

þ ∑
N

i¼1
λ*i
	 
T ∂ Ai½ �

∂pk
C*
i

	 
þ ∂ Bi½ �
∂pk

C*
i−1

	 

−
∂ Gif g
∂pk

� �
(21)

Both continuous and discrete approaches give equivalent results. Sykes et al. (1985) intuitively believe the
discrete approach to prove superior to the continuous one for the numerical simulation of the adjoint state
functions. The discrete approach permits a simpler mathematical treatment, particularly in handling the
boundary conditions. Moreover, the discrete approach uses the same matrix (or its transpose) of the linear
system of the discretized primary problem. Therefore, the matrix is treated numerically once and for all,
which allows a significant decrease of the computational costs. Samper and Neuman (1986) have shown that
with respect to the advective‐dispersive transport equations, both formulations (continuous and discrete) are
consistent in that they converge to the same adjoint state partial differential equations as the spatial and tem-
poral discretization intervals tend to zero. The continuous approach has the advantage that for specific forms
of the performancemeasure, the adjoint system of PDEs (11) can be solved analytically. Therefore, analytical
sensitivity coefficients could be derived and could be considered as reference solutions of
numerical sensitivities.
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3.3. Physical Interpretation of The Adjoint States

To provide an insight into the physical significance of the adjoint state functions, we assume that the trans-
port operator Li includes a source term denoted by Qi defined by

Qi xð Þ ¼ Q*
i δ x−x′ð Þ (22)

where Q*
i is the strength of a source (associated with the ith RN) introduced in the field at a given point x′.

Therefore, equation (1) can be rewritten as follows:

Li≡
d
dx

Di
dCi

dx

� �
−

d
dx

VCið Þ−ϕkiRiCi þ ϕki−1Ri−1Ci−1 þ Q*
i δ x−x′ð Þ ¼ 0 (23)

Assume that we are looking for the sensitivity of the performance measure J with respect to Q*
i . If the func-

tion f is explicitly independent of Q*
i and if we take p ¼ Q*

i (i.e., Q
*
i is the sole parameter of interest), equa-

tion (10) reduces after applying the adjoint operators to

dJ

dQ*
i

¼ ∫
L

0λi xð Þδ x−x′ð Þdx ¼ λi x′ð Þ (24)

Equation (24) indicates that the adjoint state function λi(x) associated with the ith RN is interpreted as the
sensitivity coefficient for the parameter of steady source strength at x. It represents the rate at which the per-

formance measure varies per unit source of RN Q*
i (MT−1L−3) at x. The dimension of the adjoint states are

those of the performance measure J times (TL3/M), for the steady‐state case considered here. This result is
similar to previous results obtained in the theory of groundwater flow (Sykes et al., 1985; Wilson &
Metcalfe, 1985).

4. Analytical Solutions

Exact analytical solutions for primary Problems A and B (i.e., equations (1)–(4)) are developed by applying
the general method for solving multispecies coupled problems introduced by Clement (2001). These analy-
tical solutions are presented in Appendix B. The details of derivation are given in supporting
information Text S1.

Exact analytical solutions for the adjoint problems (11)–(13) are also derived by applying the same method.
These solutions are associated with two kinds of performance measure. The first one is defined as a combi-
nation of RN concentrations at a given point x0 (0 < x0 < L):

J ¼ ∑
N

i¼1
αiCi x0ð Þ ¼ ∑

N

i¼1
αi∫

L

0δ x−x0ð ÞCi xð Þdx (25)

The second one is defined as a combination of spatially integrated RN concentrations as follows:

J ¼ ∑
N

i¼1
βi∫

L

0Ci xð Þdx (26)

where αi and βi are some positive coefficients.

The performance measure (25) can be used to represent the total/partial concentration at a point, while that
defined by (26) can be used to represent the total mass or themass of a specific RN remaining in the system at
steady state.

The function f associated with the performance measures (25) and (26) and appearing in equations (5) and

(11) can be written as f xð Þ ¼ ∑N
i¼1αiδ x−x0ð ÞCi xð Þ and f xð Þ ¼ ∑N

i¼1βiCi xð Þ, respectively.
The exact solutions associated with (25) and (26) are presented in Appendix C. The details of derivation are
provided in supporting information Text S2.
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Analytical expressions of sensitivity coefficients with respect to retarda-
tion factors, Darcy velocity, and effective diffusion/dispersion coefficients
are also provided in supporting information Text S3.

5. Numerical Experiments

The numerical experiments shown below are divided into two parts. The
first part aims to validate the developed analytical adjoint state model
using the continuous approach and to provide some insights from sensi-
tivity analysis based on the obtained results. In the second part, a deriva-
tive‐based global sensitivity method coupled with the adjoint state method
is used for identifying important/unimportant parameters associated with
a real field case represented by a site (Zürich Nordost) currently being
considered for underground nuclear storage in Northern Switzerland.

5.1. Validation of Analytical Adjoint Equations

To illustrate the theory presented in this work, we consider an example of
three‐member decay chain where Radionuclide 1 (RN1) decays into
Radionuclide 3 (RN3) in a homogeneous porous medium of length L
according to the sequential decay chain RN1 → RN2 → RN3. In this chain,
RN1 is the parent RN, RN2 is the daughter, and RN3 is the granddaughter.
The porous medium and RN properties are presented in Table 1. These
data are synthetic but are in the range of real values.

To insure the correctness of the analytical solutions of the primary problems, they are compared with
numerical solutions. The system of equations (1) together with boundary conditions (2)–(4) are implemen-
ted in MATLAB using the numerical solver “pdepe” (www.mathworks.com). This solver solves initial‐
boundary value problems for systems of parabolic and elliptic PDEs in the one space variable and time.
Here, the numerical solutions were run until reaching convergence to the steady‐state solutions. A small
and constant mesh size Δx = 0.01 m is used in the numerical examples to avoid numerical dispersion.
Figure 1 shows the concentrations profiles obtained from the analytical (solid lines) and numerical (sym-
bols) solutions from Problem A (a) and Problem B (b), respectively. The values of the boundary concentra-
tions and boundary fluxes used in these examples are presented in Table 1. The figures show excellent
agreements between the numerical and analytical solutions for all RN concentrations and for both problems.
5.1.1. Adjoint State Variables
This section explores some features of the adjoint state variables associated with the performance measures
defined by (25) and (26).
5.1.1.1. Total RN Concentration
The first performance measure represents the value of the total concentration at the domain center x0 = L/2.
By total concentration, we mean the sum of all RN concentrations. Therefore, X0 = x0/L = 0.5 and all αi are
equal to 1 in equation (25). The adjoint state variables associated with the total concentration at X0 = 0.5 are
depicted in Figure 2. The analytical adjoint states are also compared with numerical solutions obtained by
solving the adjoint system (11) with boundary conditions (12) or (13) using the MATLAB pdepe solver.
The figures show excellent agreements between numerical and analytical results. Figure 2a (resp.
Figure 2b) shows that for Problem A (resp. Problem B), each adjoint state has a maximum peak at
X0 = 0.5 and then decreases toward the boundaries. The adjoint state profiles exhibit discontinuities of the
derivatives at the peaks since they are also Green's functions. As discussed in section 3.3, the adjoint states
λi(X) represent the change in the total concentration at X0 for a unit source of the ith RN at X = x/L. For
Problem A, a unit source of RN at the left and right boundaries will immediately leave the system and has
no impact on the total concentration since, by definition, the adjoint states vanish at the boundaries (see
equation (12)). For each RN, the greatest impact on the total concentration at X0 (i.e., the largest adjoint state
value) occurs when the unit source is positioned at X0. This is expected because for each RN the adjoint state
is composed of two parts: an increasing part in the region 0 ≤ X ≤ X0 and a decreasing part in the region
X0 ≤ X ≤ 1. For Problem B, the same conclusion can be obtained with the exception that a unit source of
RN at the left boundary may have an impact on the total concentration since the condition at this

Table 1
Porous Medium and RN Parameter Values Used in the Applications

Parameter Value

L (m) 100
ϕ (−) 0.3
V (m/year) 10−4

D (m2/year) 2 × 10−2

R1 (−) 3
R2 (−) 4
R3 (−) 1
k1 (year

−1) 3 × 10−4

k2 (year
−1) 2 × 10−4

k3 (year
−1) 4.5 × 10−4

C0
1 (mol/m3)

100

C0
2 (mol/m3)

50

C0
3 (mol/m3)

10

F0
1 (mol·m−3·year−1)

1

F0
2 (mol·m−3·year−1)

0.1

F0
3 (mol·m−3·year−1)

0
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boundary is dλi/dx = 0 (see equation (13)) and so in general λi(0) ≠ 0. However, the greatest impact on the
total concentration at X0 will always occur when the unit source is positioned at X0 because the adjoint
state value at the left boundary will never exceed λi(X0) (i.e., λi(0) ≤ λi(X0)). This conclusion can be drawn

from the inspection of equation (C4), which shows that eλi Xð Þ is an increasing function from 0 to X0 and
so is λi(X) (see equation (C2)).

Note that for both problems, at any position X in the domain, the change in the total concentration at X0 is
mostly affected by a unit source associated with the parent radionuclide RN1, while the granddaughter radio-
nuclide RN3 has the smallest impact among all RNs (i.e., λ1(X) ≥ λ2(X) ≥ λ3(X)).
5.1.1.2. Total RN Mass
The second performance measure represents the value of the total RN mass remaining in the system so that
βi = ϕRi in equation (26) for i = 1,2,3. The analytical and numerical solutions corresponding to Problems A
and B are shown graphically in Figures 3a and 3b, respectively. Again, excellent agreements between both
solution types are obtained for all RNs. Contrary to the previous case (of total concentration where the
adjoint states are Green's functions representing discontinuities of the derivatives at the observation point),
here the adjoint states are smooth functions of the space variable. For Problem A, the adjoint states have
parabolic shapes, and each one reaches its maximum at some position between X= 0 and X= 1. The position
of the maximum is not necessary the same for all RNs. It depends on the porous medium and RN properties.
For the set of parameter values used here, all adjoint state functions have their maximums at

Figure 1. Analytical and numerical solutions for radionuclide (RN) concentrations corresponding to Problem A (a) and
Problem B (b).

Figure 2. Analytical and numerical adjoint states corresponding to Problem A (a) and Problem B (b) and associated with
the performance measure defined by (25). RN = radionuclide.
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approximatively themiddle of the domain. Therefore, for the current set of parameter values, a unit source at
the center of the system has the greatest impact on the total mass. However, different parameter values
would give different results. For instance, increasing the Peclet number Pe (=LV/D) to 50 (i.e., the current
Pe equals to 0.5) would shift the maximums to the left. For Problem B, the adjoint state are decreasing func-
tions of X as shown in Figure 3b. This characteristic of the adjoint state functions is independent from the
parameter values. Indeed, a simple inspection of equation (C8) shows that

deλ i
dX

Xð Þ ¼ −
2L2

D
βi þ ∑

N

j¼iþ1
∏
j−1

l¼i

Kl

Klþ1−Ki

 !
βj

" #
e
Pe
2 1−Xð Þφi Xð Þ

PeΦi 0ð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
e þ 4Ki

q
Ψi 0ð Þ

≤0 (27)

Therefore, eλi Xð Þ is a decreasing function of X and so is λi(X) (see equation (C1)).

In addition, we have by definition dλi/dx = 0 (see equation (13)). Therefore, the maximum is reached at the
left boundary and, as a conclusion, a unit RN source at this boundary (X = 0) has the greatest impact on the
total mass in the system.

It should be mentioned that the shapes of the adjoint state functions shown in Figures 2 and 3 are indepen-
dent from the “values” of the prescribed boundary conditions. They only depend on the boundary condition
“type” (prescribed concentrations or fluxes). This can be easily seen from the mathematical expressions

(C2)–(C5), and (C6) and (C7), which are independent of C0
i and F0

i .
5.1.2. Sensitivities
Sensitivity coefficients of the various parameters can be analytically calculated with the help of adjoint states
using the mathematical expressions presented in supporting information Text S3. The performance measure
representing the total RN mass in the system is used. For the example of three‐member decay chain, five
parameters are considered that are R1, R2, R3, V, and D.

The analytical sensitivity coefficients corresponding to Problems A and B are presented in Table 2. Negative
values indicate that a parameter increase (resp. decrease) will result in a decrease (resp. increase) of the per-
formance measure. The values indicate that for Problem A, Darcy velocity is the most sensitive parameter,
followed by the effective diffusion/dispersion coefficient, and then by the retardation factors of the parent,
daughter and granddaughter RNs, respectively. All these parameters are positive indicating that an increase
in one of these parameters will increase the total mass of RNs in the system. For Problem B, again, Darcy
velocity gives the highest sensitivity value (in absolute value), followed by the effective diffusion/dispersion
coefficient. However, the retardation factor of the granddaughter RN is the most sensitive parameter among
those of the three RNs contrary to Problem A. Moreover, the sensitivity coefficients of V and D are negative
while those of the retardation factors are positives. Therefore, Darcy velocity and effective diffusion/disper-
sion coefficients have an opposite effect on the total mass.
5.1.2.1. Insights From Sensitivity Analysis
To have a better understanding of the values presented in Table 2, we recall the definition of the sen-
sitivity coefficient ∂J/∂pk, which represents the change in the performance measure to the change in the
parameter. It can be loosely thought of as the change in the value of J for a unit increase in the value of
pk and it is referred to as the “marginal sensitivity coefficient” (Sykes et al., 1985). For the current set of
parameter values, a unit increase of the retardation factors of the parent RN R1 (from 3 to 4), the
daughter RN R2 (from 4 to 5), and the granddaughter RN R3 (from 1 to 2) represents 33.3333%, 25%,
and 100% increase in the initial value of each parameter, while a unit increase in the value of the
Darcy velocity V (from 0.0001 to 1.0001 m/year) and the value of the effective diffusion/dispersion coef-
ficient D (from 0.02 to 1.02 m2/year) represents 1,000,000% and 5,000% increase in their initial values.
This explains the large values of their associated sensitivity coefficients. Therefore, the marginal sensitiv-
ity coefficients are local derivatives and are related to the assumed initial parameter value. The value of
the sensitivity coefficient will generally be small for small changes and large for large changes in the
initial value.

In sensitivity analysis, the performance of a system is often investigated in term of the normalized sensitivity
coefficient Spk , which is defined as the value of the marginal sensitivity coefficient weighted by the initial

value of the parameter to the value of the performance measure:
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Spk ¼
pk
J

∂J
∂pk

¼ ∂ lnJð Þ
∂ lnpkð Þ (28)

The normalized sensitivity coefficient can be thought of as the percent change in the performance measure J
caused by a 1% change in the value of the parameter. It represents a common basis for comparing the effect
of system parameters to the performance measure.

Table 3 shows the analytically calculated normalized sensitivity coefficients corresponding to Problems A
and B. The analytical expressions of the performance measure associated with Problems A and B are pro-
vided in supporting information Text S4. The table shows that, in contrast to the results obtained for themar-
ginal sensitivity coefficients, the Darcy velocity is the less sensitive parameter among all other parameters,
while the effective diffusion/dispersion coefficient is the most sensitive for both Problems A and B.
However, the sensitivity coefficients of the retardation factors maintain their hierarchy of
parameter importance.

The total of cumulative variation dJ of the performance measure is given for a system of Np parameters
as follows:

dJ ¼ ∑
Np

k¼1

∂J
∂pk

dpk (29)

It represents the net change in the performance measure J and defined as the sum of all marginal sensitiv-
ities weighted by the variation of each parameter dpk.

As discussed above, it is often preferred to work with the normalized sensitivities. Therefore, the normalized
total sensitivity is defined as sum of all marginal sensitivities as follows:

Figure 3. Analytical and numerical adjoint states corresponding to Problem A (a) and Problem B (b) and associated with
the performance measure defined by (26). RN = radionuclide.

Table 2
Analytical (Adjoint State Method) and Numerical (Perturbation Method) Sensitivity Coefficients ∂J/∂pk Associated With Problems A and B for the Performance
Measure Representing the Total RN Mass

Parameter (pk)

Sensitivity coefficient ∂J/∂pk

Problem A Problem B

Analytical Numerical Analytical Numerical

R1 182.7394 182.7378 2.4643 2.4542
R2 116.9546 116.9530 2.2564 2.2482
R3 86.0131 86.0091 15.0666 15.0405
V 7.3818 × 105 7.3830 × 105 −1.6185 × 104 −1.6158 × 104

D 5.4468 × 104 5.4468 × 104 −1.4933 × 103 −1.4892 × 103

10.1029/2019WR025686Water Resources Research

HAYEK ET AL. 8810



Stot ¼ d lnJð Þ
d lnpð Þ ¼ ∑

Np

k¼1

pk
J

∂J
∂pk

¼ ∑
Np

k¼1
Spk (30)

In our example we have

Stot ¼ SR1 þ SR2 þ SR3 þ SV þ SD (31)

It can be seen from Table 3 that for ProblemA, a 1% increase in each of the
five parameters gives Stot = 1, while for Problem B a 1% increase in each
parameter results in Stot≈ 0.
5.1.2.2. Inspectional Analysis

Numerical sensitivity coefficients are also computed to compare with the analytical sensitivity coefficients
based on adjoint states. The perturbation method is used to compute the numerical sensitivity coefficients
based on the numerical solutions of the primary problems. Each sensitivity coefficient is calculated using
the following formula:

∂J
∂pk

≈
Jn pk þ δkð Þ−Jn

δk
(32)

where δk is a parameter dependent small perturbation coefficient and Jn is the performance measure calcu-
lated from equation (26) based on the numerically calculated concentrations. The integrals are computed
using the trapezoid rule. The perturbation coefficient δk is calculated as (pk/100) × 10−6 so it represents 10
−6% change of the initial parameter value. The evaluation of (32) requires an additional numerical run of
the primary problem for each parameter. Thus, in total, six numerical runs are required for each problem
(1 for calculating Jn and 1 for each perturbed parameter).

Table 2 shows also the numerically calculated sensitivity coefficients for both problems. The values compare
well with the analytical sensitivity coefficients presented in the same table. The slight differences between
the values are due to the space discretization of the numerical solutions.

We would like to mention that the results presented here are not general and they are strictly dependent on
the reference values and properties of both porous medium and RNs. Figure 4 shows for Problems A and B
the variation of the normalized sensitivity coefficient with respect to a single parameter when the other para-
meters are kept to their initial values. The curves associated with Darcy velocity (upper figures) and effective
diffusion/dispersion coefficient (middle figures) are bell shaped for Problem A and decreasing functions for
Problem B. The curves associated with the retardation factors (bottom figures) are increasing functions for
both problems. However, they stabilize at large values for Problem A, while they keep increasing for
Problem B. These results show how the parameters “importance” depend on their reference values. For
instance, for Problem A, if the reference Darcy velocity is 3 × 10−3 instead of 10−4 m/year, its normalized
sensitivity coefficient jumps from 0.0326 to 0.626 and becomes the most sensitive parameter. Similarly, if
the reference effective diffusion/dispersion coefficient is 2 × 10−5 instead of 2 × 10−2 m2/year, then its nor-
malized diffusion coefficient falls to 0.1402. This is expected because for such values (V = 3 × 10−3 m/year
and D = 2 × 10−5 m2/year) the transport is mainly advective (Pe = 15,000) and so the total mass is mainly
affected by the change in the value of Darcy velocity. The figures associated with the retardation factors (bot-
tom figures) show that the retardation factors are themost important parameters if their reference values are
of the order of 103–104 (highly sorbing RNs).

The analytical sensitivity coefficients are useful also to identify “important regions” in the parameters space.
By important regions we mean regions (showing combined effect of two or more parameters) in which the
parameters values have large effects (large sensitivities) on the performance measure. For example, if the
values of the retardation factors are kept at their initial reference values presented in Table 1, the important
regions of the (V,D) space can be identified by using the 2‐D plot showing the combined total sensitivity SV
+SD as function of the couple (V,D). Figure 5 shows that the important region is located in the region 8 × 10
−4 ≤ V≤ 8 × 10−3, 10−3 ≤ D≤ 2 × 10−2. Therefore, any value of (V,D) in this region results in a considerable
effect on the value of the performance measure.

Table 3
Analytically Calculated Normalized Sensitivity Coefficients ∂J(lnJ)/∂(lnpk)
Obtained by the Adjoint State Method for the Performance Measure
Representing the Total RN Mass

Parameter (pk)

Normalized sensitivity coefficients ∂J(lnJ)/∂(lnpk)

Problem A Problem B

R1 0.2420 6.5596 × 10−4

R2 0.2065 8.0083 × 10−4

R3 0.0380 0.0013
V 0.0326 −1.4361 × 10−4

D 0.4809 −0.0027
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Finally, it is important to mention that different decay chains of RNs would in general give different results
even when the porous medium properties are the same. As a conclusion, a global sensitivity method
becomes necessary to correctly identify the important parameters of the model.

5.2. Derivative‐Based Global Sensitivity Method Coupled With Adjoint Method

It has been shown previously that the local sensitivity coefficients ∂J(p*)/∂pk depends on the nominal point
p* and it changes with a change of p*. This deficiency can be overcome by averaging ∂J(p)/∂pk for a randomly
selected set of parameter vector p.

Kucherenko et al. (2009) presented a derivative‐based global sensitivity measures (DGSM) method which is
based on averaging local derivatives usingMonte Carlo or quasi Monte Carlo sampling methods. These mea-
sures (or indices) are defined for each parameter pk as follows:

Figure 4. Normalized sensitivity coefficients for Darcy velocity (top figures), effective diffusion/dispersion coefficient
(middle figures), and retardation factors (bottom figures) associated with Problem A (left column) and Problem B (right
column). RN = radionuclide.
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Mk ¼ ∫HNp

∂J
∂pk

���� ����dpk (33)

and

∑k ∫HNp

∂J
∂pk

���� ����−Mk

� �2

dpk

" #1=2
(34)

where HNp is the unit hypercube (0 ≤ pk ≤ 1, i = 1,…,Np).

The measure Mk is equivalent to the mean μk, while Σk is equivalent
to the standard deviation σk. These measures could be used for iden-
tifying important/unimportant parameters by using the scatter plot
Mk versus Σk.

The calculation of DGSM indices is based on the evaluation of inte-
grals, which is easily performed using classical Monte Carlo, quasi
Monte Carlo or Latin Hypercube Sampling. The empirical estimator

of a given integral ∫HNp f xð Þdx is

I f½ � ¼ 1
R
∑
R

i¼1
f xið Þ (35)

where {xi} is a sequence of random points in HNp of length r (r is the number of random realization).

Kucherenko et al. (2009) compared the DGSM with Morris (1991) and Sobol (1993) sensitivity indices meth-
ods and shown that there is a link between DGSM and Sobol sensitivity indices. They have shown also that
the computational time required for the numerical evaluation of DGSM is lower than that for the Morris
method and many orders of magnitude lower than that for estimation of Sobol's sensitivity indices.

In this section, we use the DGSM method coupled with the adjoint state method for computing sensitivity
coefficients in order to identify important/unimportant parameters of a numerical model. We consider the
model representing the geological siting area Zürich Nordost north east of the city of Zürich in
Switzerland. This siting area was proposed by NAGRA (National Cooperative for the Disposal of
Radioactive Waste) as a potential geological siting region for a high‐level waste repository for further inves-
tigation in Stage 3 of the Sectoral Plan for Deep Geological Repositories (SFOE, 2008). Figure 6 (left) shows
the schematic stratigraphic‐hydrogeological profile for this siting area. Several scenarios for modeling RN
release from the barrier system have been adopted (see Nagra, 2014). The reference scenario is applied here,
which consists in modeling the real geological formation as a layered system composed of six layers that are
(see Figure 6, right): the Opalinus clay host rock (OPA) where the waste is embedded, the lower confining
units represented by the formation Toniger Lias (TL), and the upper confining units represented by the
Dogger formations (Sandkalkabfolgen (BD‐SKA), Tonige Abfolgen and Sandig‐tonige Abfolgen (BD‐TA‐
STA)) and the Effingen beds (Kalkbankabfolgen (EFF‐KBA) and Kalkmergelabfolgen (EFF‐
KMA)), respectively.

We consider a system containing a single RN that is Uranium‐235 (235U). Uranium‐235 is assumed to be
released at the center of the host rock (OPA) at a constant rate Q = 2 × 10−6 m3/year. Zero concentration
boundary conditions are imposed at the top and bottom boundaries of the layered system, which are consid-
ered as the interfaces between geosphere and biosphere (see Figure 6, right). It is assumed that the transport
is mainly dominated by diffusion (because of the low permeability of OPA) so that V = 0. Equation (1) at
which we add a source term (representing the release of 235U) is discretized numerically for i= 1 using a cen-
tered finite volume scheme. The discretized equations can be written in matrix form (15) with i= 1. All layer
parameters are assumed to be at their reference values (which are taken from Nagra, 2014, and presented in
Table 4) except for the effective diffusion coefficients and the sorption coefficients, which are subject to
uncertainties. They can have values between a lower value and an upper value. Lower and upper values
for each layer parameters are also presented in Table 4 (taken from Nagra, 2014). The model contains then
12 uncertain parameters pk (k = 1,…,12) with pk (k = 1,…,6) represent the effective diffusion coefficients of

Figure 5. The 2‐D plot of the variation of the combined total sensitivity SV+SD as
function of (V,D).
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layers TL, OPA, BD‐SKA, BD‐TA‐STA, EFF‐KBA, and EFF‐KMA, respectively; and pk+6 (k = 1,…,6)
represent the retardation factors of layers TL, OPA, BD‐SKA, BD‐TA‐STA, EFF‐KBA, and EFF‐KMA,
respectively. Note that the retardation factor is obtained from the value of the sorption coefficient (or
distribution coefficient) Kd using the formula R = 1+ρKd/ϕ, where ρ is the layer (rock) density and ϕ is
the layer porosity.

Figure 6. (left) Schematic stratigraphic‐hydrogeological profile for the siting area Zürich Nordost (reproduced with per-
mission of Nagra, NTB 14‐03, Nagra, 2014, Figures A4–3). (right) Modeling concept for radionuclide transport.

Table 4
Parameter Values Used for the Example Presented in Section 5.2

Parameters

D (m2/s) (pk) Kd (m3/kg) (pk+6)

k Layer L (m) ϕ (−) ρ (kg/m3) RV LV UV RV LV UV

1 TL 32 0.1 2,500 4 × 10−12 2.6 × 10−13 1.7 × 10−11 0.2 0.01 0.6
2 OPA 110 0.11 2,410 5 × 10−12 5 × 10−13 2 × 10−11 0.2 0.008 0.2
3 BD‐SKA 10 0.1 2,440 4 × 10−12 4 × 10−13 2 × 10−11 0.04 0.001 0.04
4 BD‐TA‐STA 80 0.12 2,440 6 × 10−12 4 × 10−13 2 × 10−11 0.2 0.004 0.2
5 EFF‐KBA 4 0.045 2,610 9 × 10−13 2 × 10−13 8 × 10−12 3 0.01 3
6 EFF‐KMA 11 0.09 2,500 3 × 10−12 5 × 10−13 1 × 10−11 6 0.05 6

Note. LV = lower value; RV = reference value; UV = upper value.
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The performancemeasure of interest is the total diffusive flux leaving the system at the interfaces geosphere/
biosphere (i.e., the sum of RN fluxes at the top and bottom). For any given uncertain parameter, the sensi-
tivity of the performancemeasure can be obtained by applying the discrete approach presented in section 3.2
. The adjoint states are then solutions of the linear adjoint system (20). The sensitivity coefficient of a para-
meter pk at a given initial guess of parameters is obtained using equation (21). To validate the discrete
approach, we first assume that effective diffusion coefficients and sorption coefficients are at their reference
values. The results are then compared with other numerical results obtained from the perturbation method.
Table 5 shows excellent agreement between both methods.

We are interested in identifying important/unimportant parameters, or in other words, we aim to answer the
question: to which parameters the RN flux leaving the system is most sensitive?

To do so, we use the DGSMmethod coupled with the adjoint state method. We consider a sequence of quasi‐
random points {pi} of length r, where pi = (p1,i, p2,i,…, p12,i), i = 1,…,r. The quasi‐random points correspond
to the so‐called Sobol sequence (Sobol, 1976, 1998). This technique is based on the generation of determinis-
tic quasi‐random sequences with a good space‐filling property of the parameter space. Thus, the parameter
space is well covered for fairly small sets. In addition, the points of the Sobol sequence are independent so
that by enriching the design sequentially, we keep the space‐filling properties of the Sobol sequence.

For each realization i = 1,…,r, the primary and adjoint system are solved once. Thus, the total number of
required calculations is 2r. Figure 7 shows the scatter plots Mk versus Σk for r = 100 (a) and r = 1,000 (b),
respectively. The numbers k inside the plots correspond to the parameter pk. The parameters that have high
Mk and high Σk are important, while the parameters that have low Mk and Σk are relatively unimportant. It
can be observed that both sequences of realizations (r = 100 and r = 1,000) give similar results. The impor-
tant parameters are p2 (the effective diffusion coefficient of the host rock OPA), p1 (the effective diffusion

Table 5
Sensitivity Coefficients Obtained by the Adjoint State Method (Discontinuous Approach) and the Perturbation Method for the Example Presented in Section 5.2 Using
the Reference Values of All Parameters

Sensitivity coefficient

Effective diffusion coefficient (pk) Retardation factor (pk+6)

k Layer Adjoint state method Perturbation method Adjoint state method Perturbation method

1 TL 9.7172 × 10−5 9.7172 × 10−5 −1.4258 × 10−12 −1.4258 × 10−12

2 OPA 8.3550 × 10−5 8.3550 × 10−5 −3.6619 × 10−12 −3.6619 × 10−12

3 BD‐SKA −1.7368 × 10−8 −1.7368 × 10−8 −1.0043 × 10−15 −1.0042 × 10−15

4 BD‐TA‐STA 3.9337 × 10−8 3.9337 × 10−8 −2.3507 × 10−15 −2.3506 × 10−15

5 EFF‐KBA 1.2499 × 10−7 1.2499 × 10−7 −3.0738 × 10−17 −3.0738 × 10−17

6 EFF‐KMA 9.7046 × 10−8 9.7047 × 10−8 −5.5046 × 10−17 −5.5041 × 10−17

Figure 7. Estimated derivative‐based sensitivity measuresMk and Σk for the cases: (a) r= 100 and (b) r= 1,000, associated
with the example presented in section 5.2.
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coefficient of the TL), p8 (the retardation factor of the host rock OPA), and p7 (the retardation factor of the
TL). All other parameters have measures Mk and Σk close to 0 so that they are considered as unimportant
parameters.

We would like to mention that the advantage of combining DGSM method with the adjoint state method is
that the computation of measures Mk and Σk is independent from the number of uncertain parameters. For
instance, if we would like to use the perturbationmethod to computeMk and Σk, then we would need in total
r(Np+1) calculations. The same number of calculations is also required for calculating the indices associated
with the Morris screening method. However, only 2r calculations are needed using the adjoint state method.

6. Conclusion

In this paper, we presented the adjoint sensitivity model associated with the problem describing one‐dimen-
sional RN transport in heterogeneous porous media coupled with sequential first‐order decay chain in a
steady‐state regime. Both continuous and discrete approaches were used to derive the adjoint state equa-
tions. For the continuous approach, the adjoint state partial differential equations and the sensitivity coeffi-
cients were formulated based on the adjoint state theory for coupled problems. For the discrete approach, the
adjoint states are presented as solutions of matrix linear systems based on the discretized matrix system of
the primary problem. A physical interpretation indicates that the adjoint state function associated with a
given RN represents the rate at which the performance measure varies per unit source of RN.

For the case of a homogeneous porous medium, closed‐form analytical solutions of the adjoint state systems
associated with two performancemeasures are derived: combination of concentrations at a point of the finite
domain and combination of integrated concentrations. The first performance measure could be used to
represent the total concentration at a point (or the total advective flux at a point), while the second may
be used to represent the total RN mass in the system at steady state. These closed‐form adjoint states can
be considered as reference solutions to validate other solutions obtained from numerical schemes.
Sensitivity coefficients associated with three types of transport parameters are considered. The general ana-
lytical sensitivity coefficient formulas associated with each parameter are then presented as functions of the
calculated concentrations and adjoint states. The adjoint state systems together with the primary systems are
also solved numerically for both transport problems using MATLAB. Applications to the case of a three‐
member RN decay chain show excellent agreements between analytical and numerical adjoint states. The
analytically calculated sensitivity coefficients are compared to numerical sensitivities obtained from the per-
turbation method based on the numerical solutions of the primary problems. The analytical and numerical
sensitivities compare well to each other.

An inspectional analysis shows that the importance of a given parameter depends not only on its initial value
but also on those of the other parameters. Therefore, a global sensitivity analysis is necessary to correctly
identify the important parameters. In consequence, a derivative‐based global sensitivity method coupled
together with the adjoint state method is applied to a multilayer system representing a site currently being
considered for underground nuclear storage in Northern Switzerland, Zürich Nordost, for identifying impor-
tant/unimportant parameters with respect to the total RN flux leaving the system. Twelve parameters were
considered including the effective diffusion coefficients and sorption coefficients of each layer. The results
show that the most important parameters are four among them those associated with the host rock. The
results show also the advantage of the adjoint state method compared to others screening methods such
as the Morris method in term of computational effort.

Finally, it is important to note that, although the results presented here apply to the steady state case and can
be readily extended to the time‐dependent case, the latter has some unique feature that must be treated dif-
ferently. The adjoint state sensitivity method applied to the transient case will be the subject of a
forthcoming work.

Appendix A: Derivation of the Adjoint System
This appendix details the derivation of the adjoint system (11) and the associated boundary conditions (12)
and (13) starting from equations (7)–(9).

The gradient operators ∇CL and ∇pL are defined as
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∇CL¼

∂L1
∂C1

∂L1
∂C2

⋯
∂L1
∂CN

∂L2
∂C1

∂L2
∂C2

⋯
∂L2
∂CN

⋮ ⋮ ⋱ ⋮

∂LN
∂C1

∂LN
∂C2

⋯
∂LN
∂CN

266666666664

377777777775
; ∇pL¼

∂L1
∂p1

∂L1
∂p2

⋯
∂L1
∂pNp

∂L2
∂p1

∂L2
∂p2

⋯
∂L2
∂pNp

⋮ ⋮ ⋱ ⋮

∂LN
∂p1

∂LN
∂p2

⋯
∂LN
∂pNp

26666666666664

37777777777775
(A1)

The adjoint operators∇*
CL and∇*

pL are defined as the transpose adjoint operator matrices of ∇CL and ∇pL:

∇*
CL¼

∂L1
∂C1

� �* ∂L2
∂C1

� �*
⋯

∂LN
∂C1

� �*
∂L1
∂C2

� �* ∂L2
∂C2

� �*
⋯

∂LN
∂C2

� �*
⋮ ⋮ ⋱ ⋮

∂L1
∂CN

� �* ∂L2
∂CN

� �*
⋯

∂LN
∂CN

� �*

26666666666664

37777777777775
; ∇*

pL¼

∂L1
∂p1

� �* ∂L2
∂p1

� �*
⋯

∂LN
∂p1

� �*
∂L1
∂p2

� �* ∂L2
∂p2

� �*
⋯

∂LN
∂p2

� �*
⋮ ⋮ ⋱ ⋮

∂L1
∂pNp

" #*
∂L2
∂pNp

" #*
⋯

∂LN
∂pNp

" #*

266666666666664

377777777777775
(A2)

where [∂Li/∂Cj]
*and [∂Li/∂pj]

* are the adjoint operators of ∂Li/∂Cj and ∂Li/∂pj. Note that ∇CL and ∇*
CL are

square matrices while ∇pL and ∇*
pL are not in general.

The elements of ∇CL can be obtained by direct differentiation using (1). We obtain

∂Li

∂Ci
¼ d
dx

Di
d·
dx

� �
−
d
dx

V ·ð Þ−ϕkiRi

∂Li

∂Ci−1
¼ϕki−1Ri−1

∂Li

∂Cj
¼0; j≠i−1; i

8>>>>>>><>>>>>>>:
(A3)

Using the adjoint operation rule (Sun, 1994) for operator d
dx:

d
dx

� �* ¼ − d
dx, it follows from (A3):

∂Li

∂Ci

� �*
¼ d
dx

Di
d·
dx

� �
þ d
dx

V ·ð Þ−ϕkiRi

∂Li
∂Ci−1

� �*
¼ϕki−1Ri−1

∂Li

∂Cj

� �*
¼0; j≠i−1; i

8>>>>>>>>><>>>>>>>>>:
(A4)

Using (A4) and the definition of ∇*
CL in (A2), we obtain the adjoint system of PDEs (11).

The boundary conditions (12) and (13) may be obtained as follows.

The first condition in equation (8) (i.e., λ = 0) is used when a concentration boundary condition (2) is used

for the primary ProblemA, while the second condition (i.e.,∇*
CLBλ ¼ 0) corresponds to the primary Problem

Bwith a flux boundary condition (3). For this latter case, the boundary operatorLB is aN‐dimensional vector

with elementsLBi ¼ −V 0ð ÞCi 0ð Þ þ Di 0ð Þ dCi
dx 0ð Þ. Using the adjoint operation rules for the boundary operators

(Sun, 1994), we can show that ∇*
CLB is a diagonal matrix with all elements equal to Di

d·
dx

��
x¼0. The boundary

conditions (12) and (13) can be then easily deduced.
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Appendix B: Exact Analytical Solutions of the Primary Problems
The analytical solutions for both primary and adjoint problems are derived by introducing the following
dimensionless parameters:

X ¼ x
L
; Pe ¼ LV

D
; Ki ¼ ϕL2kiRi

D
(B1)

where Pe is known as the Peclet number.

Asmentioned in section 4, the exact solutions are obtained by applying the general method for solvingmulti-
species coupled problems introduced by Clement (2001). Here we only present the exact solutions. The
details of derivation can be found in the supporting information.

The exact solutions of the primary Problems A and B write for i = 1,…,N and 0 ≤ X ≤ 1 as follows:

Ci Xð Þ ¼ eCi Xð Þ þ ∑
i−1

j¼1
∏
i−1

l¼j

Kl

Klþ1−Kj

 !eCj Xð Þ (B2)

where eCi Xð Þ defined by

eCi Xð Þ ¼
C0
i þ∑i−1

j¼1 ∏i−1
l¼j

Kl
Kl−Ki

� �
C0
j

h i
e
Pe
2 XΦi Xð Þ

Φi 0ð Þ (B3)

for Problem A, and

eCi Xð Þ ¼
2L F0

i þ∑i−1
j¼1 ∏i−1

l¼j
Kl

Kl−Ki

� �
F0
j

h i
e
Pe
2 XΦi Xð Þ

D PeΦi 0ð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
e þ 4Ki

q
Ψi 0ð Þ

h i (B4)

In equations (B3) and (B4), the functions Φi(X) and Ψi(X) are defined by

Φi Xð Þ ¼ sinh
1
2
1−Xð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
e þ 4Ki

q� �
; Ψi Xð Þ ¼ cosh

1
2
1−Xð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
e þ 4Ki

q� �
(B5)

Appendix C: Exact Analytical Solutions of the Adjoint Problems
The exact solutions of the adjoint problems are derived for the performance measures defined by equa-
tions (25) and (26). In this appendix, we only provide the final solutions. The details of derivation can be
found in the supporting information. The general form solution associated with both performance measures
writes as follows:

λi Xð Þ ¼ eλi Xð Þ þ ∑
N

j¼iþ1
∏
j−1

l¼i

Kl

Kl−Kj

 !eλj Xð Þ (C1)

where eλi Xð Þ depends on the performance measure type.

For the performance measure defined as a combination of RN concentrations at a point (i.e., equation (25)),eλi Xð Þ is a Green function, which is defined as follows.

For Problem A, the exact expression of eλi Xð Þ writes as follows: for 0 ≤ X ≤ X0 = x0/L,

eλi Xð Þ ¼ 2Pie
Pe
2 X0−Xð ÞΦi X0ð Þφi Xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
e þ 4Ki

q
Φi 0ð Þ

(C2)

and, for X0 ≤ X ≤ 1,
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eλi Xð Þ ¼ 2Pie
Pe
2 X0−Xð ÞΦi Xð Þφi X0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
e þ 4Ki

q
Φi 0ð Þ

(C3)

For Problem B, eλi Xð Þ is defined as follows:for 0 ≤ X ≤ X0,

eλi Xð Þ ¼
2Pie

Pe
2 X0−Xð ÞΦi X0ð Þ Peφi Xð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
e þ 4Ki

q
ψi Xð Þ

h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
e þ 4Ki

q
PeΦi 0ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
e þ 4Ki

q
Ψi 0ð Þ

h i (C4)

and, for X0 ≤ X ≤ 1,

eλi Xð Þ ¼
2Pie

Pe
2 X0−Xð ÞΦi Xð Þ Peφi X0ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
e þ 4Ki

q
ψi X0ð Þ

h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
e þ 4Ki

q
PeΦi 0ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
e þ 4Ki

q
Ψi 0ð Þ

h i (C5)

with Pi ¼ L2 αi þ∑N
j¼iþ1 ∏j−1

l¼i
Kl

Klþ1−Ki

� �
αj

h i
=D in equations (C2)–(C5).

For the performance measure defined as a combination of spatially integrated RN concentrations (i.e., equa-

tion (26)), the general analytical expression of eλ i Xð Þ writes as follows:

eλi Xð Þ ¼ L2

DKi
βi þ ∑

N

j¼iþ1
∏
j−1

l¼i

Kl

Klþ1−Ki

 !
βj

" #
1−

e−
Pe
2 X Φi Xð Þ þ e

Pe
2 φi Xð Þ

h i
Φi 0ð Þ

24 35 (C6)

for Problem A, and

eλi Xð Þ ¼ L2

DKi
βi þ ∑

N

j¼iþ1
∏
j−1

l¼i

Kl

Klþ1−Ki

 !
βj

" #
1−

e
Pe
2 1−Xð Þ Peφi Xð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
e þ 4Ki

q
ψi Xð Þ

h i
PeΦi 0ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
e þ 4Ki

q
Ψi 0ð Þ

264
375 (C7)

for Problem B.

In equations (C2)–(C8), the functions φi(X) and ψi(X) are defined by

φi Xð Þ ¼ sinh
1
2
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
e þ 4Ki

q� �
; ψi Xð Þ ¼ cosh

1
2
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
e þ 4Ki

q� �
(C8)
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Erratum
In the originally published version of this article, Equation 34 was typeset incorrectly. The equation has
since been corrected and this version may be considered the authoritative version of record.
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