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Abstract Radar‐gauge rainfall discrepancies are considered to originate from radar rainfall
measurements while ignoring the fact that radar observes rain aloft while a rain gauge measures rainfall
on the ground. Observations of raindrops observed aloft by weather radars consider that raindrops fall
vertically to the ground without changing in size. This premise obviously does not stand because raindrop
location changes due to wind drift and raindrop size changes due to evaporation. However, both effects
are usually ignored. This study proposes a fully formulated scheme to numerically simulate both raindrop
drift and evaporation in the air and reduces the uncertainties of radar rainfall estimation. The Weather
Research and Forecasting model is used to simulate high‐resolution three‐dimensional atmospheric fields. A
dual‐polarization radar retrieves the raindrop size distribution for each radar pixel. Three schemes are
designed and implemented using the Hameldon Hill radar in Lancashire, England. The first considers only
raindrop drift, the second considers only evaporation, and the last considers both aspects. Results show that
wind advection can cause a large drift for small raindrops. Considerable loss of rainfall is observed due to
raindrop evaporation. Overall, the three schemes improve the radar‐gauge correlation by 3.2%, 2.9%, and
3.8% and reduce their discrepancy by 17.9%, 8.6%, and 21.7%, respectively, over eight selected events. This
study contributes to the improvement of quantitative precipitation estimation from radar polarimetry and
allows a better understanding of precipitation processes.

1. Introduction

Modern weather radars enable instantaneous precipitation estimation with large areal coverage (e.g., a
radius of 200 km) at spatial and temporal resolution as high as 1 km and 5 min. Thus, they have been
widely applied in hydrology and meteorology. However, due to the indirect and remotely based obser-
vation of hydrometers in a fluctuating atmospheric environment, radar rainfall estimates are subject to
large uncertainties. Widely recognized radar rainfall measurement errors include ground clutter and
anomalous propagation, signal attenuation, beam blockage, Z‐R relation parameterization, and vertical
variability in measured radar reflectivity (Bringi & Chandrasekar, 2001; Frasier et al., 2013; Kurri &
Huuskonen, 2008; Lang et al., 2009). Physical‐based adjustments of these errors are processed step by
step using different radar quality control algorithms (Bringi & Chandrasekar, 2001; Villarini &
Krajewski, 2010). To obtain a more reliable radar rainfall product, it is necessary to carry out additional
statistical adjustments of radar rainfall by leveraging the strengths of rain gauge measurements, which
is regarded as the “ground truth” for radar rainfall estimates (Bringi et al., 2011; Dai et al., 2015; Hasan
et al., 2016; Villarini et al., 2014). Radar‐gauge pairs are constructed at the same time and location (on
the ground). Their discrepancies are interpreted as radar rainfall uncertainties and are further parti-
tioned into different error types, such as overall bias, local bias, conditional bias, and random error
in various studies (AghaKouchak et al., 2010; Ciach et al., 2007; Germann et al., 2009; Habib et al.,
2008; Nerini et al., 2017; Thorndahl et al., 2014). This is widely accepted as an easily implemented
and highly effective approach (Dai et al., 2014).

In radar‐gauge rainfall comparisons, the discrepancy is considered to originate from the radar rainfall mea-
surement, ignoring the fact that the radar observes the rain regime aloft while the rain gauge captures the
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raindrops on the ground (Frasier et al., 2013; Kurri & Huuskonen, 2008). The radar rainfall is directly used as
the ground rainfall by a simple projected transform, and the raindrops observed by the aloft radar are
assumed to fall vertically and mass invariably to the ground. This premise is obviously incorrect because
it ignores a variety of microphysical processes when hydrometeors descend from the radar observation
height to the ground, such as horizontal drift, evaporation, aggregation, melting, break up, collision, and
coalescence (Dai & Han, 2014; Lack & Fox, 2007; Testik & Rahman, 2016, 2017). Albeit the importance of
investigating the interaction between these microphysical processes as well as the associated meteorological
elements and radar rainfall measurements is well recognized (Austin, 1987; Cluckie et al., 2000; Li &
Srivastava, 2001; Pallardy & Fox, 2018), only a few studies addressed the relevant quantitative and practical
methods by embedding the predominant raindrop evolution processes in radar rainfall adjustment (Dai &
Han, 2014; Song et al., 2017).

In this work, we focused on two evolution processes of raindrops: horizontal motion and evaporation. There
has been an increasing interest in radar rainfall uncertainty due to raindrop drift owing to developments in
spatial radar rainfall resolution in recent years (Pallardy & Fox, 2018). After the out‐of‐sync issues with pix-
els between the radar and rain gauge were reported by Collier (1999), Mittermaier et al. (2004) presented the
first quantified method to calculate wind‐induced error by simulating fall streaks of snow. It was found that
the order for the displacements could be as large as 10–20 km. Lack and Fox (2007) used a wind field simu-
lated by radar observation itself to estimate the trajectories of falling drops and consequently adjusted the
radar rainfall product. It was concluded that the impact of wind drift could be severe, especially at high spa-
tial resolutions. Later, Lauri et al. (2012) presented a method to compute the horizontal displacement of
hydrometeors using an advection scheme. Dai and Han (2014) simulated the motion of raindrops in the
air by solving particle motion equations. The wind‐induced errors of radar and rain gauge measurements
were addressed by Lauri et al. (2012) and Dai and Han (2014), respectively, and new radar‐gauge rainfall
comparisons were constructed.

In terms of raindrop evaporation, Rosenfeld and Mintz (1988) and Li and Srivastava (2001) noted that
raindrops could be considerably evaporated, especially for light‐to‐moderate rain in semiarid regions.
Borowska et al. (2011) concluded that the observed increase in differential reflectivity (ZDR) toward sur-
face observations must be attributed to evaporation based on analysis of 1 month polarimetric radar
measurements. To quantify the evaporation‐induced error in radar rainfall estimation, Kumjian and
Ryzhkov (2010) investigated the effect of raindrop evaporation on polarimetric radar parameters, includ-
ing horizontal reflectivity (ZH), ZDR, and specific differential phase (KDP) using a one‐dimensional
numerical model. They found that the evaporation rate that occurs in the subcloud layer has a close
relationship with the initial shape of raindrops aloft. The model was later improved by Xie et al.
(2016), who analyzed the amount of evaporation using a vertically pointing radar. Most recently,
Pallardy and Fox (2018) simulated individual raindrops in the air using dual‐polarization radar mea-
surements and further concluded that raindrop evaporation played a significant role in radar rainfall
estimation, especially in dry atmospheric environments.

Due to the motion and evaporation of raindrops, uncertainty is inevitably generated in directly intercept-
ing radar rainfall aloft as surface rainfall. It is imperative to understand and identify the microphysical
processes of raindrops and their impact on radar rainfall estimation. However, only a few studies have
simulated raindrop evolution in a spatially variable atmospheric environment, and more importantly,
a united framework to model both microphysical processes is still lacking. Therefore, this study
proposes a fully formulated scheme to numerically simulate both the motion and evaporation of rain-
drops in a three‐dimensional atmospheric context. This contributes to the improvement of quantitative
precipitation estimation from radar polarimetry and allows a better understanding of the precipitation
processes.

This paper is organized as follows. Section 2 illustrates the study area and data sources used. The Weather
Research and Forecasting (WRF) model and raindrop size distribution model are also introduced in the con-
text of this work. Section 3 presents the framework of the proposed scheme and describes the methods pro-
posed for simulation and evaluation of raindrop microphysical processes. The results and validation are
presented in section 4. A detailed discussion of these results appears in section 5. Finally, section 6 sum-
marizes the key findings, limitations, and future work.
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2. Materials and Models
2.1. Study Area and Data Sources

The Hameldon Hill radar located in Lancashire, England (latitude 53°45′
17″N, longitude 2°17′19″W) and its surrounding area were chosen as the
study domain in this work. The radar system is a multiparameter C‐band
(5.3 cm wavelength) radar with simultaneous transmission and reception
of horizontally and vertically polarized waves. The nominal beam width
of the radar is 1° with typical gate resolutions of 300 and 600 m. The radar
completes a series of scans with different angles every 5 min. The key
technical specifications of the Hameldon Hill radar are listed in Table 1.

All the radar observables provides good, quantitative data that are
reprojected to a Cartesian grid (based on the British National Grid
coordinate system) spacing of 1 and 2 km, up to a range of approxi-
mately 50 and 75 km, respectively. The 1 km resolution data describe

rain rate observations and provide the most detailed information, down to the scale of individual con-
vective clouds (Met‐Office, 2014). Data sets were received from mid‐2014 by the Nimrod system, which
is a very short‐range forecasting system used by the Met Office. At the radar location, an on‐site com-
puter carries out aerial elevation control and digital signal processing. The radar rainfall data used in
this study were supplied by the U.K. Met Office. The detailed description of the processing procedures
can be found in Golding (1998) and Harrison et al. (2015). The raw data were processed by this Nimrod
system, which incorporates extensive processing to correct the various sources of radar errors including
noise, clutter, anomalous propagation, intervening rain attenuation, occultation, range attenuation,
bright band, and orographic enhancement (Song et al., 2017). The detailed calibration of the dual‐
polarized reflectivity of the U.K. radar has been given by Gourley et al. (2009), which uses the consis-
tency between radar reflectivity (ZH), ZDR, and the path integral of KDP to calibrate the reflectivity. The
dual‐polarized signatures are used to estimate the raindrop size distribution (DSD) parameters. To
obtain a more reliable outcome, three years (2015–2017) of disdrometer data were used to constrain
the radar reflectivity range. Those values of radar reflectivity that not within the range calculated by
disdrometer will be considered as incorrect values and be replaced by the interpolation of other values.

The gauge data sets were sourced from the Land and Marine Surface Stations Data (1853–current) of the
Met Office Integrated Data Archive System. The data set comprises daily and hourly weather measure-
ments, including rainfall measurements. A rain gauge network comprising 11 stations located within
50 km distance of the Hameldon Hill radar measures continuous hourly rainfall (see Figure 1). The
indexes of the rain gauges are displayed in the figure. The station number is ordered based on its distance
from the Hameldon Hill radar. The hourly gauge data of each of the 11 gauges were visually examined
for each day of the year 2015, indicating that the gauge data were quality controlled to a high degree.
The data sets are available from the National Centre for Atmospheric Science British Atmospheric
Data Centre (Met‐Office, 2012).

The meteorology data were sourced from the European reanalysis, European Centre for Medium‐Range
Weather Forecasts (ECMWF) Reanalysis ERA‐Interim data set produced by the ECMWF. ERA‐Interim is
a reanalysis of the global atmosphere covering the data‐rich period since 1979 and continuing in real time.
It is considered one of the most significant atmospheric data sources for the scientific community (Dee et al.,
2011). The data assimilation system used to produce ERA‐Interim is based on the 2006 release of the
Integrated Forecasting System, which includes a four‐dimensional variational analysis with a 12 hr analysis
window. The spatial resolution of the data sets is approximately 80 km on 60 vertical levels from the surface
up to 0.1 hPa (Berrisford et al., 2011). ERA‐Interim data can be downloaded from the ECMWF Public Data
sets web interface, and detailed information (e.g., on current data availability) is available on the ECMWF
website (at http://www.ecmwf.int/research/era). To ensure consistency in the radar and gauge data, 3 years
of reanalysis data with 6 hr fields on an improved resolution of 1° × 1° grid covering the Hameldon Hill radar
and the surrounding area (with a range of 80 km to the radar center) were used. Three months of data were
stored in a single file formatted by GRIB. The ERA‐Interim data for the storm events were collected and
retrieved separately. We selected ERA‐Interim data because they are some of the most significant data

Table 1
Key Technical Specifications of the Radar

Parameters Values

Antenna diameter 3.7 m
Beamwidth at half power 1°
Polarization Linear H/V
Scanning type Plan Position Indicator (PPI)
Scanning rate 1.4 revolutions per minute
Wavelength 5.3 cm (C band)
Peak power 250 kW
Maximum range 255 km
Location HameldonHill, Lancashire, United Kingdom
Latitude 53°45′15″N
Longitude 2°17′11″W
Altitude 407 m MSL (Mean Sea Level)
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sources for the scientific community and encompass many essential climate variables in a physically
consistent framework (Dee et al., 2011), which is significant to obtain the reliable three‐dimensional
atmospheric fields used in this study.

The coverage time range of each evaluation rainfall event must satisfy the maximum of the 11 rain gauges
within the study area (100 × 100 km). In addition, we excluded the events where the radar, gauge, and
dual‐polarization data were not all available for the whole events. Finally, eight precipitation events were
selected for the analysis to cover the period from 2015 to 2017. The relatively lighter rainfall events in the
cold season were also included to ensure diversity. Event 1 in 2015 and Event 7 in 2016 were specifically used
for graphics demonstration. Detailed descriptions of these events, including date, duration, and event‐
averaged rainfall, are presented in Table 2. To coordinate with the running of the WRF model, the start
and end hours were set to 0, 6, 12, and 18.

2.2. The WRF Model

The WRF model (Powers et al., 2017) is a state‐of‐the‐art mesoscale numerical weather prediction system
designed for both atmospheric research and operational forecasts. It features two dynamical cores, a data
assimilation system, and a software architecture supporting parallel computation and system extensibility.
The WRF model is chosen because it has been developed and studied by a broad community of researchers
and can be easily set up in each study area. In addition, the WRF model can perform simulations of local
finer‐scale atmospheric environments, which is referred to as “dynamical downscaling.” In this work, the
WRF model was configured to run with initial and boundary conditions taken from global reanalysis of
ECMWF data sets. The three‐dimensional atmospheric data generated from WRF were applied to raindrop
microphysical simulation to estimate raindrop motion and evaporation. Among the WRF outputs, the fol-
lowing atmospheric fields are mainly used: horizontal wind (U for eastward and V for northward), vertical
wind (W), perturbation geopotential (PH), base‐state geopotential (PHB), terrain height (HGT), perturbation
potential temperature (T), perturbation pressure (P), base state pressure (Pb), and water vapor mixing
ratio (qv).

Figure 1. Map of the rain gauges, radar, and study area with terrain elevation in the background.
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The relative humidity (RH) used to calculate raindrop evaporation cannot be directly obtained from the
WRF output. Instead, it is calculated using the water vapor mixing ratio as given in the following equation:

RH ¼ 100×MAX 1; qv=qvsð Þ (1)

where qvs represents the saturation water vapor mixing ratio, and the function returns the argument with
the largest value. This equation is concluded from the postprocessing system of the National Center for
Atmospheric Research Command Language. As WRF uses the ERA levels to describe the vertical height,
which are based on surface pressure and pressure at the top of the atmosphere, the layer height (LH) is
computed as follows:

LH ¼ PH þ PHBð Þ
g

þHGT (2)

where g represents the gravitational acceleration.

2.3. Raindrop Size Distribution Model

The DSD represents the distribution of the number of raindrops according to their diameters. It is typically
expressed by mathematical functions such as the gamma or lognormal distributions (Feingold & Levin,
1986; Islam et al., 2012; Testik & Pei, 2017; Ulbrich, 1983). The DSD parameters in different locations and
times are required as an initial condition of raindrop microphysical simulation. The advantage of dual‐
polarized radar has been the accurate retrieval of DSD parameters using a physical basis as opposed to sta-
tistical methods (Bringi et al., 2003). Benefiting from long‐standing research, this study mainly uses previous
outcomes pertaining to DSD retrieval from polarimetric radar measurements, especially Brandes et al.
(2004) and Kim et al. (2010). The method treats the drop axis ratio as a variable and estimates the DSD para-
meters from radar reflectivity, differential reflectivity, and specific differential phase values.

To better describe the DSDs for small raindrops, a normalized form of gamma distribution, as described in
Bringi et al. (2003), is used to represent rain DSD:

N Dð Þ ¼ Nwf μð Þ D=D0ð Þμexp − 3:67þ μð Þ D=D0ð Þ½ � (3)

where the parameter D is the diameter of the drop, D0 represents the drop median volume diameter (mm),
Nw denotes the normalized concentration parameter, and f(μ) is a function of the shape parameter (μ)
given as

f μð Þ ¼ 6
3:674

μþ 3:67ð Þμþ4

ϒ μþ 4ð Þ : (4)

The normalization form is free from any assumption of the shape of the raindrop spectra and could thus
improve understanding of DSD (Testud et al., 2001). More importantly, polarimetric radar variables ZDR
and KDP are dependent on D0. In the present study, an empirical relation between D0 and ZDR, as

Table 2
Durations and Accumulated Rainfall for All Storm Events

Event ID Storm start time Storm end time Duration (hr) Accumulated rainfall (mm)

1 8 May 2015, 12:00:00 9 May 2015, 00:00:00 12 44.6
2 1 June 2015, 12:00:00 2 June 2015, 00:00:00 12 22.0
3 6 October 2015, 12:00:00 7 October 2015, 18:00:00 36 25.2
4 4 December 2015, 18:00:00 6 December 2015, 12:00:00 42 8.0
5 11 November 2016, 18:00:00 12 November 2016, 12:00:00 18 18.2
6 21 November 2016, 06:00:00 22 November 2016, 06:00:00 24 12.6
7 5 June 2017, 00:00:00 6 June 2017, 12:00:00 36 31.6
8 28 June 2017, 00:00:00 29 June 2017, 12:00:00 36 6.8

Note. The rainfall is accumulated by events and areal averaged for the study area.
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presented in Brandes et al. (2004), was established to deriveD0. Since μ is directly related to the median drop
diameter D0 by definition, μ can also be derived from ZDR. D0, μ, and water content W (g/m3) are given by
Brandes et al. (2004)

D0 ¼ 0:171Z3
DR−0:725Z

2
DR þ 1:479ZDR þ 0:717 (5)

μ ¼ 6:084D0
2−29:85D0 þ 34:64; (6)

W ¼ 5:589×10−4ZH×10
0:223Z2

DR−1:124ZDRð Þ (7)

Using D0 and W, Nw can be estimated by the following equation (Kim et al., 2010):

Nw ¼ 3:674

πρw

103W
D4
0

� �
(8)

where ρw is the water density (g/m3). The DSD parameters estimated using the above equations are obtained
for each radar pixel and time step (with spatial and temporal resolutions of 1 km and 5 min, respectively).
The raindrop spectra are then used to drive the simulation of microphysical evolution.

It is worth remarking that other DSD parameter retrieving methods using polarimetric radar measurements
exist, such as the “βmethod” proposed by Gorgucci et al. (2000) and Bringi et al. (2002). However, a compar-
ison of different DSD retrieving methods is outside the scope of this study and has been researched by many
past works (Anagnostou et al., 2008; Bringi et al., 2003; Gorgucci et al., 2002; Kim et al., 2010; Park
et al., 2005).

3. Methodology
3.1. Model Structure

The discrepancy between radar and gauge rainfall is considered to be radar measurement error and is gen-
erally adjusted through statistical bias correction. The systematic bias is typically expressed in an additive or
a multiplicative form using event‐based, daily, monthly, or long‐term radar‐gauge pairs. If the radar and
gauge measurements and the corrected radar product are represented by R, G, and ψ, respectively, the stan-
dard radar bias correction can be expressed as

ψ ¼ R×f G;R½ � (9)

where f is a function used to calculate the radar rainfall bias. For example, the function can be expressed as a
ratio between the averaged radar and averaged gauge rainfall measurements over an accumulation period.
The radar itself has measurement errors such as clutter, anomalous propagation, and bright band, and it is
assumed that these have been corrected. The above equation assumes that the radar rainfall observed aloft is
equal to the surface rainfall directly below the volume sampled by the radar beam. However, if the motion
and evaporation of raindrops falling to the ground are considered, the above equation can be rewritten as

ψ ¼ R×f G; Γ R−Eð Þ½ � (10)

where Γ is a transform function used to obtain the correct radar‐gauge match. E is the missed rainfall due to
the raindrop evaporation effect. All variables in the transform function Γ are expressed in the form of a three‐
dimensional matrix in projected space and time.

To compare the impact of different microphysical processes on the radar rainfall estimation, three models
with different complexities of equation (10) are designed. The drift model (DM) omits E, which indicates that
raindrop evaporation is ignored. Similarly, the evaporationmodel (EM) omits the transform function Γ, indi-
cating that the raindrop motion is not included. The drift‐evaporation integrated model (DEM) retains all
items and thus represents both effects.

The key issue in DM is to derive the reconstruction matrix by simulating the raindrop drift process in the air
and estimating the radar rainfall on the ground, which is fully discussed in section 3.2. The amount of
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evaporated rain is derived by simulating the raindrop evaporation process,
which is the major challenge in the EM and is discussed in section 3.3.
Although these two processes are described separately, it is worth remark-
ing that the DEM is implemented by integrating these two processes
instead of cascading them. In each time step, the raindrop drift and eva-
poration are simulated independently, but the location change of the rain-
drop due to drift and mass change due to evaporation will affect the
raindrop's microphysical processes in the next time step. A detailed dis-
cussion of the integration of these two processes is presented in
section 3.4.

The adjustment procedure for radar‐gauge rainfall discrepancy is based
on the DM, EM, and DEM raindropmicrophysical evolutionmodels using
the WRF model and dual‐polarization radar displayed in Figure 2. The

input data sets include the radar data before adjustment, the dual‐polarization radar data used for retrieving
the initial raindrop size distribution of each radar pixel, and the WRF output data provided the three‐
dimensional atmospheric fields. The location error and rain rate loss of each grid can be calculated through
the DM, EM, or DEM raindrop microphysical simulation to adjust the radar‐gauge rainfall discrepancy.

3.2. Simulation of the Raindrop Wind Drift Process

In this work, we assumed that each raindrop can be regarded as existing independently in the atmosphere,
which means that it does not interfere with other particles. The possible uncertainty introduced under this
assumption is discussed in section 5. To make the simulation of the raindrop microphysical process practi-
cal, the space between the ground surface and the height at which rainfall is observed by the radar is divided
into multiple vertical layers (according to the 28 WRF terrain‐following eta levels), and each layer is further
divided into horizontal squared grids (1 km spatial resolution). With this discretization, the space is com-
posed of a mass of conceptual three‐dimensional subspaces whose location (with center coordinates of x,
y, η) and resolution are configured to be equal to those of the WRF model. The atmospheric elements (such
as wind and temperature) are assumed to be uniform within a subspace. To avoid boundary configuration,
the boundary of the study area is extended by approximately 10 km to ensure that the raindrops would not
move outside the space.

The tracing processes are carried out on the origins of 60 raindrops ranging from roughly 0.1 to 6.0 mm in
diameter (at 0.1 mm interval). For each raindrop, the center point of the radar pixel is regarded as the initial
horizontal coordinates. The height of the radar center beam corresponding to this point is configured as the
initial height. The simple geometric method presented in Dai et al. (2013) is used to estimate the
beam height.

Gravitational force and drag force by the wind are themain factors controlling themotion of raindrops in the
air (Choi, 1997). The trajectories of the raindrops in each layer are traced separately by solving the particle
motion equations as follows:

m
d2x
dt2

¼ 6πμaD U−
dx
dt

� �
CdRe

24

m
d2y
dt2

¼ 6πμaD V−
dy
dt

� �
CdRe

24

m
d2η
dt2

¼ 6πμaD W−
dη
dt

� �
CdRe

24
−mg 1−

ρa
ρw

� �
(11)

wherem represents the mass of the raindrop, Re refers to the Reynolds number, ρa and ρw refer to the den-
sities of air and water, respectively, and μa is the viscosity of air.U, V, andW are theWRF‐derived wind fields
in the x, y, and η directions, respectively. Cd denotes the drag coefficient of the raindrops. The equation used
to estimate Cd was sourced from Chow et al. (1988).

The numerical simulation process is performed for each raindrop in each time step (e.g., 30 s). The displace-
ments in the x and y directions for all time steps are accumulated separately. The procedure is iterated until

Figure 2. Adjustment procedure to resolve radar‐gauge rainfall discrepancy
using the WRF model and dual‐polarization radar.
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the raindrop moves outside the subspace and enters a new subspace. The final location of the raindrop is
obtained until it reaches the ground surface.

The above simulation is carried out for all raindrops and radar pixels. The radar pixels, built based on the
projection of the radar beam, are considered the original radar rainfall image. The adjusted radar pixels
can be established based on the above simulation by recombining of the original radar rainfall image. In
the adjusted radar rainfall image, the raindrops in each radar pixel stem from a series of radar pixels in
the original image. Thus, the adjusted radar rainfall at a given pixel p can be derived using

Γp ¼ ∑n
i¼1wp;iRi

∑n
i¼1wp;i

(12)

where i represents the index of the radar pixel where the raindrop drifts from pixel p and n is the total num-
ber of radar pixels. wp,i is the weight between radar pixel p and i, which is given as a function of the drop
diameter D:

wp;i ¼ ∑m
j¼1N Dj

� �
D3
j (13)

whereDj is a subset of raindrop spectra, indicating that these raindrops travel from radar pixel i to radar pixel
p. The above equation is defined in such a form because the rain rate is proportional to the number and
volume of raindrops (Bringi et al., 2003; Islam et al., 2012).

3.3. Simulation of the Raindrop Evaporation Process

A simple analytical solution for raindrop evaporation assumes that a prescribed steady environment is
derived, which is presented by Rogers and Yau (1996) and Li and Srivastava (2001) and later applied by
Kumjian and Ryzhkov (2010) and Pallardy and Fox (2018). If the vapor density at the drop surface exceeds
the vapor density in the environment, the water vapor is diffused away from the rain drop. The rate of mass
diffusion from a falling drop is expressed by Rogers and Yau (1996):

dm
dt

¼ 2πDDvf vΔρv (14)

where dm and dt are the discrete form of raindrop mass and time, respectively. Dv is the diffusion coefficient
of water vapor in air, and ρv is the difference in vapor density between the drop's surface and its environ-
ment. fv is the diffusion and ventilation coefficient of water vapor in air, which can be expressed as a function
of diffusivity, air viscosity μa, raindrop diameter, and terminal fall velocity of the raindrop V:

f v ¼ 0:78þ 0:308 v=Dvð Þ1=3 VD=vð Þ1=2 (15)

The change in diameter dD is then estimated using

VD
dD
dz

¼ 4
ρw

Dvf vΔρv (16)

where the vertical coordinate z is measured downward, from the start of the time step to the end. The esti-
mation of ρv can be found in Li and Srivastava (2001). The change in the diameter of the raindrop is calcu-
lated for each time step until the raindrop totally evaporates or reaches the ground. A new raindrop size
distribution on the ground can be obtained by modeling the evaporation processes for all raindrops within
a radar pixel. The rain rate loss E due to evaporation is estimated by comparing the raindropmass before and
after the evaporation process.

3.4. Integrating the Simulations of Raindrop Drift and Evaporation Processes

In the DEM scheme, the initial raindrop size distribution and location are obtained using the same approach
as the individual process models of drift and evaporation. In this scheme, the motion of the raindrop and its
change in diameter (due to evaporation) are simulated alternately. More specifically, after a new position
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and velocity of the raindrops are simulated at the end of each time step, the change in drop diameter is esti-
mated based on the raindrop evaporation model, and the new drop diameter is used in the next time step.

As both the location and mass of the raindrop may change when it reaches the ground, the adjusted radar
rainfall is derived using the following equation:

Γp ¼ ∑n
i¼1wp;i Ri−Eið Þ
∑n

i¼1wp;i
(17)

The calculation of weights is also based on equation (13). With the simulation of trajectories and evolution of
raindrops in all radar pixels, the adjusted radar rainfall is regarded as the “true” ground surface rainfall
observed by radar. Although the radar‐gauge pairs are still built based on the projected location of the radar
beam, a more complicated and rational spatial relationship between them is considered.

3.5. Evaluation Method

As mentioned above, part of the discrepancy between radar and gauge rainfall measurements is the error
due to the raindrop microphysical evolution. Therefore, an adjustment in radar rainfall error induced by
raindrop evolution will improve consistency between radar and gauge rainfall measurements. As a result
of this, the evaluation method is designed by calculating the indicators related to the radar‐gauge
rainfall differences.

Four indicators were used in this study, namely, the Spearman rank correlation coefficient (SRC), fractional
absolute difference (FAD), hit ratio (HR), and false alarm ratio (FAR). The SRC is equivalent to the Pearson's
linear correlation coefficient applied to the rankings of the variables. If all the ranks in each variable are dis-
tinct, the SRC is defined as follows:

SRC ¼ 1−
6∑d2

k k2−1
� � (18)

where d is the difference between the ranks of the two variables and k is the length of each variable. The
range of SRC is [−1, 1], and a higher value corresponds to a higher positive correlation. The SRC is used
to reflect the degree of match between the radar and gauge rainfall measurements (Cecinati et al., 2017;
Germann et al., 2009; Habib et al., 2008).

As the correlation cannot reveal the radar‐gauge absolute bias, the fractional absolute difference is intro-
duced, which is written as

FAD ¼ 1
k
∑
k

i¼1

Ri−Gij j
Gi

(19)

where R and G are the radar‐estimated and gauge rainfall, respectively, and k is the total number of rainfall
events.

It was found that the occurrence ratio of rainy pixels may change after the adjustment of radar rainfall. Both
raindrop drift and evaporation adjustment may cause the rainfall to decrease to 0 in the original rainy radar
pixels. As the ability to determine rain or lack of it is an important aspect of radar rainfall measurement,HR
and FAR are also calculated. They are defined as follows:

HR ¼ Na

Na þ Nc
(20)

FAR ¼ Nb

Na þ Nb
(21)

where Na is the number of correct rain forecasts (hits), Nb is the number of false alarms, Nc is the number of
misses. Na, Nb, and Nc are the entries of a contingency table of the radar rainfall measurement against gauge
observations, which are presented in Table 3. The rainfall threshold value to define rain/no rain used in this
study is 0.1 mm/hr. According to the definition of hit and false alarm rates, a perfect rainfall product should
have HR = 1 and FAR = 0.
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3.6. Calculation of Three‐Dimensional Atmospheric Fields Using
the WRF Model

The three‐dimensional atmospheric fields were estimated using the WRF
model with Advanced ResearchWRF dynamic core, version 3.8. TheWRF
model was used to downscale the ERA‐interim reanalysis data for eight
storm events, where each event has a 24 hr warm‐up.

The simulations were performed using theWRFmodel with the following
physical options: the Thompson aerosol‐aware scheme microphysical parameterization (Thompson &
Eidhammer, 2014), the RRTM longwave radiation scheme (Mlawer et al., 1997), the Dudhia shortwave
radiation scheme (Dudhia, 1989), the Kain‐Fritsch cumulus scheme (Kain, 2004), the Mellor‐Yamada‐
Janjic planetary boundary layer scheme (Janjić, 1994), and the Noah‐MP land surface model (Niu et al.,
2011). Additional options from the version of WRF intended for climate applications were also incorporated.

The spatial setup of theWRFmodel is composed of two domains centered at the Hameldon Hill radar with a
downscaling ratio of 1:5. A detailed description of the domain configuration is presented in Table 4. The 25
km domain covers most of the United Kingdom, and the 5 km one‐way nested domain covers the extent of
radar measurement. The Lambert conformal conic projection was used as the model horizontal coordinates.
In the vertical direction, we used 28 terrain‐following eta levels, with the top level set at 50 hPa. The model
was designed with 0.5 hr downscaling temporal resolutions with interpolation from the 6 hr ECMWF data.
The atmospheric fields associated with DSD evolution (including wind, temperature, and relative humidity)
were obtained in the outputs of Domain 2 with 5 km spatial and 0.5 hr temporal resolutions. During the
simulation process of raindrop wind drift and evaporation, these atmospheric fields will be projected to 1
km grids (the same as in the case of the radar).

4. Results
4.1. Calculation of DSD by Dual‐Polarization Radar

The DSD that governs the initial raindrops spectra was estimated using dual‐polarization radar measure-
ments. The change in DSD parameters with time for two events is shown in Figure 3. All the relevant para-
meters, namely, Do, dBNw (dBNw = log10(Nw)), and μ, are plotted. The value was averaged over the study
area for all rainy radar pixels with a temporal resolution of 5 min. The DSDs in most radar pixels can be
retrieved using the polarimetric radar variables ZH and ZDR (see section 2.3). However, the retrieved method
cannot derive all DSDs for all radar pixels. The pixels with missing ZH or ZDR are estimated using the neigh-
boring pixels. For the first event, small drops (low Do) of a large number (high dBNw) were observed in most
time steps, especially during the middle event. A different trend in the parameters was observed in the sec-
ond event, during which relatively larger volume‐averaged drops were found (see Figure 3b). Temporal var-
iation in the parameters in the second event were more intense than those in the first event, particularly for
the parameter μ.

A fixed DSD is commonly used in current radar rainfall estimations and raindrop evolution simulations (Dai
& Han, 2014). Considering the large differences of all three parameters between two events, a fixed DSD
parameter will introduce a large uncertainty in the simulation of microphysical processes. Therefore, the
variational DSD over space and time used in this study is considered more reliable.

4.2. Simulation of Raindrop Microphysical Processes

The raindrop drift and evaporation processes were simulated by numerical iteration within the three‐
dimensional atmospheric environment using the height of the raindrop observed by the radar to the ground

level. The simulation was carried out for a range of raindrop sizes at each
pixel and time step. The spatial and temporal resolutions of the simulation
were configured to 1 km (the same as the radar) and 0.5 hr (the same as
that for the WRF model), respectively. Within the space and time unit,
the atmospheric conditions associated with the DSD evolution are
regarded as consistent. In each simulation, the time step of the numerical
iteration was set to 30 s.

Table 3
Rain/No Rain Contingency Table of the Radar Rainfall
Measurement Against Gauge Observations

Rain No rain

Rain Na (hits) Nb (false alarms)
No rain Nc (misses) Nd (correct negatives)

Table 4
Configurations of the WRF Model for Three Nested Domains

Domain
Domain size

(km)
Grid Spacing

(km)
Grid
size

Downscaling
ratio

d01 11 * 360 25 21 * 21 —

d02 175 * 175 5 35 * 35 1:5
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Comparisons of the final horizontal drift and ground wind are shown in Figures 4 and 5 for Events 1 and 3.
These two events were selected for demonstration owing to their representative wind conditions. The figures
in the first column refer to the ground wind at different times (unit: m/s), and the remaining figures repre-
sent the raindrops drift for raindrop diameters of 0.2, 1, and 5 mm. The start and end points of the drift
arrows are the real projected locations of the raindrops on the ground. The arrows are not shown in the fig-
ure if the raindrops drift outside the study domain. Some arrows in the drift map of the 5 mm raindrop in
Figure 4 are missing. This is because the drift distance is less than 0.5 km, which means that the raindrop
will stay within the radar pixel it originates in. There are obvious different patterns of wind fields within
and between these two events. In Event 1, the wind fields generally blow to the northwest corner of the study
domain. More specifically, part of the wind direction is west forward, and another part is northwest forward.
The last time step of Event 1 (8 May 2015, 20:00) shows some wind fields pointing almost north. The change
in wind in Event 3 is not so remarkable; the wind generally blows from northeast to southwest.

Figure 3. Time series plot of median diameter Do, intercept parameter Nw, and shape parameter μ for the (a) 8 May 2015
event and (b) 21 November 2016 event, respectively.
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The general patterns of raindrop drift are quite close to the corresponding wind fields. However, there are
many deviations, or even conflicts, between them at some locations. For example, a comparison of the drift
map of the 0.2 mm raindrop with the wind field in the first time step of Event 1 (8 May 2015, 13:00) shows
that the drift directions in the southwest part of the domain are inclined to point west instead of northwest.
This trend is more obvious for the drift maps of the 1 and 5 mm raindrops. Moreover, noticeable differences
between the drift and wind maps are found in the last time step, especially in the eastern part of the study
area. These deviations are reasonable because the wind field only records the ground surface wind, whereas
the raindrop drift is the consequence of the integrative impact of wind from the radar beam to the ground,
which has been proved by checking the vertical profiles of the wind direction. This result proves that there is
considerable uncertainty associated with raindrop evolution using solely ground wind observations.

In terms of the drift distance, the relationships between area‐averaged drift distance and wind speed for dif-
ferent drop sizes are shown in Figure 6. The drift distances are calculated using the real cases of all eight

Figure 4. Maps of ground wind and raindrop drifts for sizes 0.2, 1, and 5 mm for different time steps for the 8 May 2015 event.
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events. One can observe that the drift distance decreases with the increase in the raindrop size at the same
wind speed. This is because the falling speed of the raindrop is positively correlated with its diameter, and
consequently, the time of raindrop motion in the air decreases with the increase in the raindrop diameter
covering the same vertical distance. In addition, the drift distance obviously increases with the wind
speed, but at different ratios for different raindrop sizes. The ranges of drift distance for raindrop sizes of
0.2, 1, and 5 mm are approximately 1.5–14, 1–7, and 0.1–4 km, respectively, indicating that the variation
in the drift distance decreases significantly with the increase in the raindrops.

4.3. Radar Rainfall Adjustment Considering the Raindrop Microphysical Process

The radar rainfall images on the ground surface are derived by considering the raindrop drift, evaporation,
and both aspects. A comparison of the corrected images (based on DM, EM, and DEM) and the original one

Figure 5. The same as Figure 4 but for the 21 November 2016 event.
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for Events 1 and 3 are shown in Figures 7 and 8, respectively. In these fig-
ures, the spatial and temporal resolutions are 1 km and 5 min for all radar
rainfall images, respectively. The time for each figure corresponds exactly
to that of the wind field in Figures 4 and 5. The images of each time step
are displayed with individual color maps to better illustrate the differences
between radar images using different adjusted models.

A comparison of the drifted radar images (DM) with the original images
indicates that the drift directions mainly follow the wind direction in
Figures 4 and 5, although the drift direction and distance cannot be
observed apparently at first glance from these large‐scaled images. For
example, the drifted images move southwest compared to the original
radar images in Figure 7. Many hints on the images (marked as red lines)
confirm this reasoning. In addition, many pixels do not show rain in the
original image but do so in the drift image. This is because the different
sizes of raindrops have different drift distances, and part of the raindrops
in the rainy pixels may drift to the no‐rainy pixels in the original radar
image. This phenomenon can only be observed at the boundary of the
cluster of rainy pixels.

For the evaporation images derived using the EM scheme, all the overall
values are less than the original radar rainfall. It is worth remarking that the DM adjustment will not affect
the rainfall balance of the entire study area, whereas the EM adjustment causes various degrees of mass loss
of rainfall. One can observe a significant mass loss of rainfall in Event 1 (see Figure 7). This loss is relatively
small in Event 3 (see Figure 8).

The combined effect of raindrop drift and evaporation on radar rainfall are studied using DEM adjustment
and shown in the last column of the group images. The images show that the extent and quantity of the rainy
domain are similar to those in the drift images and evaporation images, respectively. However, the combined
effect does not denote a simple refactoring of the drift and evaporation radar image. In DEM adjustment, the
size of the raindrop will change in each iteration before drifting. The raindrop may completely disappear
before it reaches the ground. Such cases will certainly not have a drift process.

4.4. Comparison of Radar‐Gauge Rainfall and Evaluation of the Proposed Method

To evaluate the proposed method under different configurations (DM, EM, and DEM), a series of compari-
sons were carried out using ground surface rainfall from a rain gauge network as reference values. First, the
hourly accumulation radar with 1 km spatial resolution and gauge rainfall estimations are compared for dif-
ferent events at two gauge locations as shown in Figures 9 and 10. The black dash‐dot line and red dotted line
refer to the measured gauge and radar rainfall, whereas the other lines denote corrected radar rainfall.
Compared to the gauge rainfall of DM and DEM radar rainfall values, the absolute errors are smaller than
the original values and EM results in most cases. For the time steps with high rainfall rate (e.g., 4
mm/hr), the original value exhibits the worst or second‐worst performance compared to the DM, EM, and
DEM outputs, such as Event c at Gauge 2 and Event a at Gauge 9 (see Figures 9c and 10a).

The correlation coefficients, FAD, HR, and FAR, are then calculated to quantify the performance of four
types of radar rainfall adjustments. In Figure 11, the correlation coefficients between the original radar
and gauge rainfall at different gauge locations are displayed using hollow red dashed circle, whereas those
between the corrected radar and gauge are represented using other colors. With a few exceptions, the origi-
nal radar rainfall has the least correlation with the gauge rainfall. The highest correlation coefficient varies
for different times and locations. The DEM adjustment tends to perform best in Events c and d at 50% gauges.

In terms of the FAD, as shown in Figure 12, the original radar rainfall has the worst performance (36.4% of
the proportion), followed by the EM (27.2%), and the radar rainfall values of both DM (18.2%) and DEM
(18.2%) are relatively better. As there is no considerable difference in the HR and FAR values within these
events, we did not present them here.

The detailed values of these indicators are listed in Tables 5–7. The values are averaged over all gauges for
each event. The correlation coefficients of all corrected radar rainfall values are generally better than the

Figure 6. Relationship between averaged wind speed and drift distance for
different raindrop sizes.

10.1029/2019WR025517Water Resources Research

DAI ET AL. 9224



original values. For example, the DM adjustment increases the correlation from the original 0.75 to 0.81 in
Event 6, which denotes an improvement of 8.0% over the original value. In Event 6, the EM scheme improves
the correlation from 0.75 to 0.79, denoting an improvement of 5.3%. The maximum enhancement for the
DEM is observed in Event 8, which also shows an improvement of 7.2%. The increases in the correlation
coefficients are 3.2%, 2.9%, and 3.8%, on average, for all time steps and locations of DM, EM, and
DEM, respectively.

Moreover, all radar rainfall events using DM and DEM adjustments and 75% radar rainfall events using EM
adjustment show lower FAD values than their original counterparts. For example, the DM, EM, and DEM
schemes can reduce the discrepancy by 42.6%, 16.0%, and 53.2%, respectively, compared to the original
FAD values in Event 4. The DEM scheme reduces radar‐gauge discrepancy by 21.7% averagely for all rainfall
events. Overall, there is no significant difference in theHR and FAR between the four types of radar rainfall.
Three schemes only exhibit a slightly worse performance for Event 3 in terms ofHR and for Event 5 in terms
of FAR (see Table 7). It is concluded that the radar adjustment approach indeed improves the match with the
radar‐gauge match.

Figure 7. Comparisons of original and adjusted radar images (using the DM, EM, and DEMmodels, respectively) for different time steps for the 8 May 2015 event.
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5. Discussion

The impact of raindrop motion and evaporation on radar rainfall measurement has been recognized for
years (Collier, 1999; Li & Srivastava, 2001). Despite its importance, this issue is not considered or addressed
in the most up‐to‐date radar rainfall quality control experiments (Lauri et al., 2012; Xie et al., 2016). This is
because the induced errors are considered insignificant compared to ground clutter, beam blockage, and ver-
tical variability of reflectivity, and the complicated process experienced by a real raindrop is difficult to
model. The results of this work indicate that the radar rainfall estimated error induced by two microphysical
processes, namely raindrop drift and evaporation, cannot be ignored. For example, the drift distance can
reach 14 km for a raindrop size of 0.2 mm, and 5 km for one with a size of 1 mm. An obvious fall in rainfall
intensity due to evaporation adjustment was also noted in Figures 7 and 8. More importantly, an improve-
ment in radar rainfall performance is observed in most events. Therefore, it can be concluded that the radar
rainfall error induced by the microphysical processes of raindrop drift and evaporation cannot be ignored.

Figure 8. The same as Figure 7 but for the 21 November 2016 event.
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The novelty of this study can be summarized by the following three points: 1) in comparison to the work
by Dai and Han (2014), which assumed that the raindrops within a pixel can only drift to a single
location, this work simulates raindrop movement using a varying raindrop size distribution obtained
from a dual‐polarization radar; 2) few studies have quantified the possible error induced by raindrop
evaporation on radar‐gauge comparison. We believe that the proposed scheme for the adjustment of
evaporated induced error offers valuable insights to the scientific community; 3) this is the first study that
numerically simulated the motion and evaporation of raindrops in a three‐dimensional atmospheric
context.

Figure 9. Time series plot of rain gauge, and original and adjusted radar rainfall values for different events at Gauge 2. On
dates (a) 8 May 2015, (b) 6 October 2015, (c) 21 November 2016, and (d) 28 June 2017.

Figure 10. The same as Figure 9 but for Gauge 9.
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However, some limitations admittedly exist, indicating the uncertainty associated with the proposed
scheme. From our point of view, the uncertainty originates from, but is not confined to, the initial conditions
of the raindrops, such as location, DSD, and sampling, and a series of simplifications in simulating the evo-
lution of the raindrops. The first issue may be considered via a comparison of the impact of the top, center,
and bottom beams of the radar on the wind drift simulation, as demonstrated in Dai and Han (2014). It was

Figure 11. Comparisons of correlation coefficients between rain gauge rainfall and various radar rainfall estimates
(original, DM, EM, and DEM) for different locations and events. On dates (a) 8 May 2015, (b) 6 October 2015,
(c) 21 November 2016, and (d) 28 June 2017.

Figure 12. Comparisons of FAD values of various radar rainfall estimates (original, DM, EM, and DEM) using rain gauge
rainfall as the reference for different locations and events. On dates (a) 8 May 2015, (b) 6 October 2015, (c) 21 November
2016, and (d) 28 June 2017.
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found that the differences in radar‐gauge rainfall correlation between the
three beam heights formost time steps are small. To obtain amore reliable
DSD, the modern dual‐polarization radar is used. The so‐retrieved DSD is
also subject to a series of uncertainties (Kim et al., 2010), but it can better
reflect the real DSD spectra than predefined and fixed DSD. The DSD
spectra should cover a range of 0.1–6 mm with an interval of 0.1 mm to
elaborately model the variation among different raindrops. All these
efforts are intended to arrive at a better initial condition for the model.
However, more work is needed.

Other errors may affect the adjustment and validation process of this
work. One of the major concerns is the uncertainty originated from the
meteorological data sets, that is, the ERA‐Interim data used to drive

the WRF model. If the value of meteorological data significantly deviates from the true weather condition,
the adjustment results will be unreliable, and the error of radar rainfall estimation may increase. This could
partly explain why the performance of the proposed schemes is unstable, in particular, for the EM scheme.
Thus, in future work, we will compare or integrate several sources of meteorological data, for instance, from
the Meteorological Service of Canada and the National Centers for Environmental Prediction, to maximally
decrease the uncertainty induced by the WRF driving data. The second issue is related to the inconsistent
spatial scale compared to radar rainfall measurements. Many studies have investigated the inconsistent scale
in the comparison of radar and gauge (see section 1). However, as compared to the WRF driving data
induced uncertainty, the gauge representativeness error is negligible with the 1 km and 1 hr space‐time reso-
lutions used in this study because the spatial variability is relatively small under these scales (Seo &
Krajewski, 2010, 2011). The proposed scheme is fully physical based, and the rain gauge is not involved.
The other error sources of radar measurement may contaminate the results presented in this study. The
weather radar data have been corrected for various sources of radar error including noise, clutter, anomalous
propagation, intervening rain attenuation, occultation, range attenuation, bright band, and orographic
enhancement. However, processing of radar data is complicated, and it is difficult to address all errors, as
well as their interdependences. The goal of this work is to make the proposed scheme one of the essential
components in processing radar observational data. The proposed scheme can be employed as the last step
in processing raw radar data, after other errors have been minimized. Because the adjustment procedure is
highly time consuming, enhancing the efficiency of the scheme could be a key solution to enable its use in
real‐time applications. We will conduct a series of experiments to improve the model efficiency in future
study, such as selecting the optimum spatial and time resolutions to balance the accuracy and efficiency.

In addition, one major assumption of the present work is that a raindrop is independent in the atmosphere,
and other microphysical processes such as break up, collision, and coalescence are ignored. It should be
noted that evaporation and wind drift are considered as the principle factors that cause discrepancies in
radar‐gauge rainfall because they lead to changes in the amount of rainfall directly through mass variation
and horizontal motion of raindrops. However, other microphysical processes cannot change the rainfall
amount directly. However, they can influence wind drift and evaporation by changing the raindrop size dis-

tribution. We agree that the change in raindrop size distribution induced
by other microphysical processes will bring inevitable uncertainties in the
simulation process of evaporation and wind drift. However, they also sig-
nificantly increase the complexity of the simulation. Thus, this study
omits other microphysical processes. We do not expect to accurately simu-
late all microphysical processes for a raindrop. In fact, there is no need to
do so in this work because rainfall is composed of a very large number of
integrative raindrops, and the simulated error within a tolerance for a sin-
gle raindrop will not remarkably affect the final radar rainfall estimation
owing to the spatial continuity of rainfall distribution. This work is a pilot
study that can raise the research community's attention about the connec-
tion between raindrop microphysical processes and radar‐gauge rainfall
comparison. More significant microphysical processes, such as collision
and coalescence, can be included in future studies.

Table 5
Correlation Coefficients Between Radar and Gauge Rainfall
Measurements for All Events

Event Original DM EM DEM

1 0.90 0.93 0.93 0.94
2 0.86 0.89 0.91 0.90
3 0.87 0.88 0.88 0.89
4 0.83 0.85 0.86 0.88
5 0.88 0.88 0.90 0.90
6 0.75 0.81 0.79 0.80
7 0.79 0.80 0.82 0.82
8 0.83 0.88 0.84 0.89

Table 6
Fractional Absolute Difference Between Radar and Gauge
Rainfall Measurements for All Events

Event Original DM EM DEM

1 0.46 0.39 0.47 0.42
2 0.50 0.47 0.47 0.42
3 0.45 0.39 0.45 0.39
4 0.94 0.54 0.79 0.44
5 0.40 0.34 0.37 0.34
6 0.76 0.73 0.62 0.59
7 0.48 0.45 0.44 0.42
8 0.54 0.32 0.46 0.30
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The selection of ground or three‐dimensional atmospheric fields is also worth remarking upon. High spatial
and temporal atmospheric fields are needed to simulate microphysical processes associated with the rain-
drop. The WRF‐derived hourly three‐dimensional atmospheric fields obtained by downscaling the
ECMWF ERA‐Interim data, including wind, temperature, pressure, and relative humidity, were used in this
work. The possible errors in these estimated fields have been discussed in the literature (Carvalho et al.,
2012; Wilson et al., 2011; Zhang et al., 2013). Some ground observations of these fields may have higher accu-
racy. However, a comparison of the ground wind with the drift direction and distance in Figures 4–6 show
that the ground observations cannot replace the three‐dimensional atmospheric field in the raindrop evolu-
tion simulation. As ECMWF can provide a global reanalysis meteorological data set, the three‐dimensional
atmospheric fields can be obtained easily in any region of interest, which will significantly reduce the diffi-
culty of applying the proposed method in other areas. Other reanalysis data sets can also be good choices for
different climate regimes and research purposes. In summary, it is recommended to use the downscaled
three‐dimensional atmospheric fields instead of ground observations in related future work.

Lastly, the comparison of radar‐gauge rainfall discrepancy under the DM, EM, and DEM adjustments
showed different performances for different situations. Among the three adjustment models, none of the
models show the best skill at all time steps and locations. This is because the original radar rainfall measure-
ment may suffer to different degrees for raindrop drift and evaporation‐induced error. Although uncertainty
is associated with the proposed scheme, the adjustment may even agree with the original radar rainfall mea-
surement if the microphysically induced error is not significant. Possible factors affecting the performance of
the three models will be investigated in future work. Considering the significant decrease in bias and accep-
table improvement in the correlation coefficient, the DEM adjustment appears to be the best scheme, with-
out much loss of generality, at the present time.

6. Conclusion

This study proposes a fully formulated scheme to numerically simulate both the drift and evaporation of
raindrops in a three‐dimensional atmospheric context and reduces the uncertainties of radar rainfall estima-
tion. The WRF model is used to simulate the high‐resolution three‐dimensional atmospheric fields, and a
dual‐polarization radar is adopted to retrieve the raindrop size distribution for each radar pixel. The consis-
tency between the atmospheric observations and the simulated microphysical processes demonstrates the
effectiveness of this method. With the ground rainfall from a rain gauge network as reference, the proposed
scheme can significantly improve the radar‐gauge correlation and reduce the discrepancy for most situa-
tions. For event‐averaged values over all time steps and locations, the drift (DM), evaporation (EM), and
combination scheme (DEM) adjustments can improve the radar‐gauge correlation by 3.2%, 2.9%, and 3.8%
and reduce their discrepancy by 17.9%, 8.6%, and 21.7%, respectively at most for eight selected events. The
combination scheme of DEM has the best performance and is recommended for future radar rainfall
quality control.

Some problems remain with the proposed scheme, as discussed in section 5. Some of the problems, such as
the start height of a raindrop and DSD retrieval error, have been explored. The evaluation method may also
highlight issues with radar‐gauge comparisons and create uncertainties such as the point‐to‐area represen-
tative error (Borga et al., 2002) and gauge measurement error. However, this study is a preliminary attempt

Table 7
Hit Ratios (HR) and False Alarm Ratios (FAR) of Radar Rainfall With Gauge Rainfall as Reference for All Events

Event

HR FAR

Original DM EM DEM Original DM EM DEM

1 0.94 0.94 0.94 0.94 0.15 0.14 0.13 0.12
2 0.99 0.99 0.99 0.99 0.21 0.21 0.20 0.20
3 0.91 0.88 0.88 0.88 0.15 0.12 0.15 0.12
4 0.95 0.96 0.95 0.96 0.17 0.15 0.16 0.11
5 0.82 0.82 0.81 0.82 0.10 0.11 0.11 0.11
6 0.93 0.96 0.93 0.94 0.14 0.14 0.13 0.11
7 0.94 0.94 0.94 0.94 0.17 0.17 0.15 0.16
8 0.95 0.95 0.94 0.95 0.08 0.07 0.06 0.06
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at adjusting the impact of both raindrop drift and evaporation on radar‐gauge rainfall comparison, which
has been alleviated to some extent via the simple scheme proposed in this study and can be easily applied
to other study areas. It is acknowledged that a bias correction using rain gauges as a reference is an essential
component in all radar rainfall quality control. The inconsistent conditions in comparing radar and gauge
rainfall will invariably introduce new uncertainty to the radar rainfall. In future work, a higher number
of study areas with diverse climate and geographical conditions will be explored to improve the performance
of the proposed method.
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